Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung zur Nanomechanik etabliert sich in Düsseldorf

14.11.2012
Berufung von Gerhard Dehm an das Max-Planck-Institut für Eisenforschung
Das Düsseldorfer Max-Planck-Institut für Eisenforschung (MPIE) hat seit Anfang Oktober eine neue Abteilung. Prof. Gerhard Dehm verstärkt das Team der Materialforscher um den Bereich der Nanomechanik. Seine neue Abteilung mit dem Namen „Struktur und Nano-/Mikromechanik von Materialien“ hat das Ziel die mechanischen Eigenschaften von Werkstoffen ausgehend von der atomaren Struktur grundlegend zu verstehen und die neuen Erkenntnisse für die Entwicklung von schädigungstoleranten Werkstoffen zu nutzen.

Bei der Entwicklung neuer Konzepte für Materialien mit exzellenten mechanischen Eigenschaften konzentriert sich Dehm vor allem auf die Untersuchung atomarer Defektstrukturen und ihren Wechselwirkungen. Dadurch kann er Rückschlüsse auf den Zusammenhang zwischen Struktur und mechanischen Eigenschaften herstellen. Neue und unerwartete Erkenntnisse liefern insbesondere Materialien im Mikro- und Nanometerbereich, da ihr Verhalten von dem massiver Werkstoffe abweicht.
Die zu untersuchenden Dimensionen werden so klein, dass zum Beispiel Defekte im Material mit der puren Geometrie der Probengröße wechselwirken und zu ungewöhnlichen Materialeigenschaften führen, die im entsprechenden Massivmaterial nicht auftreten. Dehms Forscherteam erhofft sich die an den nanoskaligen Materialien gewonnenen Erkenntnisse auch für Massivmaterialien nutzen zu können. So sollen bisher gegensätzliche Eigenschaften, wie zum Beispiel extreme Härte und große Verformbarkeit, zukünftig für technische Werkstoffe realisierbar werden.

Für solche Untersuchungen werden in den nächsten zwei Jahren gravierende Umbauten am MPIE stattfinden. Unter anderem sollen neue hochauflösende Transmissionselektronenmikroskope dabei helfen in situ nano- und mikromechanische Experimente durchzuführen. In situ Methoden ermöglichen es den Forschern mechanische Veränderungen vorzunehmen und gleichzeitig deren Auswirkungen auf die Mikrostruktur zu beobachten.

Anwendung findet das Forschungsinteresse von Dehm vor allem in der Nano- und Mikroelektronik zum Beispiel für Automobile, in der Energietechnik und für flexible Elektronik. Aber auch die Lebensdauer von Hochtemperaturwerkstoffen und komplexen Stählen hängt von den lokalen mechanischen Eigenschaften ab. Deshalb sind auch diese Untersuchungsgegenstand der neuen Abteilung. Des Weiteren können Dehms Methoden beitragen die Verbindung von Keramiken und Polymeren mit Metallen zu verbessern. Dies ist unter anderem für den Korrosionsschutz und für die Veredelung von Oberflächen interessant.

Dehm promovierte 1995 am Stuttgarter Max-Planck-Institut für Metallforschung im Fach Werkstoffwissenschaft. Bevor er 2005 zur Montanuniversität Leoben wechselte, war er neben einem Auslandsaufenthalt am Technion in Haifa/Israel, Gruppenleiter in Stuttgart. In Leoben war Dehm Professor für Materialphysik und Leiter des Erich-Schmid-Instituts für Materialwissenschaft der Österreichischen Akademie der Wissenschaften.

Yasmin Ahmed Salem | Max-Planck-Institut
Weitere Informationen:
http://www.mpie.de

Weitere Berichte zu: Eisenforschung MPIE Max-Planck-Institut Nanomechanik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics