Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faserwerkstoffe: Federleicht

18.11.2013
Weg mit überflüssigen Kilos: In der Industrie ist Masseeinsparung ein wichtiges Thema. An der TU Wien ersetzt man daher bei der Federherstellung massiven Stahl durch leichte Faserwerkstoffe.

Sie sind in der Armbanduhr und im Autofahrwerk genauso wichtig wie bei Messgeräten oder Raumfahrzeugen: Federn sind allgegenwärtig und werden auf den ersten Blick manchmal als technische Trivialität betrachtet.


Spiralfeder
TU Wien


Schraubendruckfeder
TU Wien

Zu Unrecht, wie Richard Zemann von der TU Wien weiß. Bei ihrer Herstellung gibt es viel zu verbessern. Sein Team fand einen Weg, kompliziert geformte Federn aus Faser-Kunststoff statt aus Stahl zu erzeugen. Das spart Gewicht und bringt ein hervorragendes Materialverhalten.

Kohlenstoff und Harz

Karbonfasern sind extrem belastbar. Nur einige Mikrometer dick sind die Filamente, die das Forschungsteam von Richard Zemann am Institut für Fertigungstechnik und Hochleistungslasertechnik der TU Wien verwendet, doch ihre Länge kann in die Kilometer gehen. Bündelt man diese dünnen Fasern, erhält man eine leichte aber extrem steife Struktur.

Damit die Fasern in Form bleiben, bettet man sie in einer Matrix ein, zum Beispiel in Epoxidharz. „Das Harz selbst nimmt im optimalen Fall keine Kräfte auf, aber es bindet die Kohlenstofffasern aneinander und sorgt so für die nötige Stabilität“, erklärt Richard Zemann.

Dass die Eigenschaften dieser Fasermaterialien für ihren Einsatz bei der Herstellung von Federn sprechen, ist recht offensichtlich: Ihre Dichte ist extrem gering – sie beträgt weniger als ein Viertel der Dichte von Stahl – und gleichzeitig übertreffen Faser-Kunststoff-Verbunde Stahl teilweise in ihrer Steifigkeit.

Trotzdem wurden Faserverbundwerkstoffe bisher nur für vergleichsweise einfache Blattfedern eingesetzt, weil die Herstellungsverfahren für kompliziertere spiralförmige oder schraubenförmige Formen fehlten. Das Team der TU Wien konnte allerdings mit dem Projektpartner, der Federnfabrik Tmej, einen Prozess entwickelt, der die Herstellung aller wichtigen Federgestalten erlaubt. Wie das genau funktioniert, will Richard Zemann derzeit noch nicht verraten. „Wir stellen jedenfalls zuerst einen dicken Draht her, der danach zu einer schraubenförmigen Feder umgeformt werden kann“, sagt er.

100.000 Belastungen und kein bisschen müde

Die Resultate können sich jedenfalls jetzt schon sehen lassen: Erste Spiralfedern konnten 100.000 Belastungszyklen unbeschadet überstehen. „Wir haben den Versuch dann einfach abgebrochen – die Federn zeigten überhaupt keine Ermüdung und hätten sicher noch eine viel größere Zahl von Belastungen ausgehalten“, sagt Richard Zemann.

Der Herstellungsprozess wird nun noch für die Serienanwendung verbessert. Forschungsbedarf gibt es noch hinsichtlich der Harz- bzw. Kunststoffkomponente: Die Kohlenstofffasern halten die oftmalige Belastung zwar problemlos aus, aber die Matrix rundherum könnte irgendwann doch geringfügig ihre Form ändern. An der TU Wien werden derzeit noch Ideen zur Verbesserung der Kunststoffkomponente untersucht.

Die neuartigen Federn sind äußerst korrosions- und chemikalienbeständig. Der entscheidende Vorteil ist allerdings die Gewichtsersparnis. Bei gleicher Steifigkeit reduziert sich die Masse um siebzig bis achtzig Prozent verglichen mit herkömmlichen Stahlfedern. Gerade in der Automobilindustrie ist man sehr auf Gewichtseinsparungen bedacht – eine geringere Masse bedeutet letztlich auch weniger Treibstoffverbrauch. Ganz entscheidend ist das Thema Gewicht natürlich im Luft- und Raumfahrtbereich.

„Zunächst werden sich Karbon-Faser-Verbund-Federn sicher im gehobenen Marktsegment durchsetzen“, prognostiziert Richard Zemann, „doch langfristig soll die neue Technologie auch in Massenprodukten verwendet werden – das ist unser erklärtes Ziel.“

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/federleicht/

Rückfragehinweis:
Dipl.-Ing. Richard Zemann
Institut für Fertigungstechnik und Hochleistungslasertechnik
Technische Universität Wien
Adolf Blamauerg. 1-3, 1030 Wien
T: +43-1-58801-31165
M: +43-676-5229319
richard.zemann@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics