Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faserwerkstoffe: Federleicht

18.11.2013
Weg mit überflüssigen Kilos: In der Industrie ist Masseeinsparung ein wichtiges Thema. An der TU Wien ersetzt man daher bei der Federherstellung massiven Stahl durch leichte Faserwerkstoffe.

Sie sind in der Armbanduhr und im Autofahrwerk genauso wichtig wie bei Messgeräten oder Raumfahrzeugen: Federn sind allgegenwärtig und werden auf den ersten Blick manchmal als technische Trivialität betrachtet.


Spiralfeder
TU Wien


Schraubendruckfeder
TU Wien

Zu Unrecht, wie Richard Zemann von der TU Wien weiß. Bei ihrer Herstellung gibt es viel zu verbessern. Sein Team fand einen Weg, kompliziert geformte Federn aus Faser-Kunststoff statt aus Stahl zu erzeugen. Das spart Gewicht und bringt ein hervorragendes Materialverhalten.

Kohlenstoff und Harz

Karbonfasern sind extrem belastbar. Nur einige Mikrometer dick sind die Filamente, die das Forschungsteam von Richard Zemann am Institut für Fertigungstechnik und Hochleistungslasertechnik der TU Wien verwendet, doch ihre Länge kann in die Kilometer gehen. Bündelt man diese dünnen Fasern, erhält man eine leichte aber extrem steife Struktur.

Damit die Fasern in Form bleiben, bettet man sie in einer Matrix ein, zum Beispiel in Epoxidharz. „Das Harz selbst nimmt im optimalen Fall keine Kräfte auf, aber es bindet die Kohlenstofffasern aneinander und sorgt so für die nötige Stabilität“, erklärt Richard Zemann.

Dass die Eigenschaften dieser Fasermaterialien für ihren Einsatz bei der Herstellung von Federn sprechen, ist recht offensichtlich: Ihre Dichte ist extrem gering – sie beträgt weniger als ein Viertel der Dichte von Stahl – und gleichzeitig übertreffen Faser-Kunststoff-Verbunde Stahl teilweise in ihrer Steifigkeit.

Trotzdem wurden Faserverbundwerkstoffe bisher nur für vergleichsweise einfache Blattfedern eingesetzt, weil die Herstellungsverfahren für kompliziertere spiralförmige oder schraubenförmige Formen fehlten. Das Team der TU Wien konnte allerdings mit dem Projektpartner, der Federnfabrik Tmej, einen Prozess entwickelt, der die Herstellung aller wichtigen Federgestalten erlaubt. Wie das genau funktioniert, will Richard Zemann derzeit noch nicht verraten. „Wir stellen jedenfalls zuerst einen dicken Draht her, der danach zu einer schraubenförmigen Feder umgeformt werden kann“, sagt er.

100.000 Belastungen und kein bisschen müde

Die Resultate können sich jedenfalls jetzt schon sehen lassen: Erste Spiralfedern konnten 100.000 Belastungszyklen unbeschadet überstehen. „Wir haben den Versuch dann einfach abgebrochen – die Federn zeigten überhaupt keine Ermüdung und hätten sicher noch eine viel größere Zahl von Belastungen ausgehalten“, sagt Richard Zemann.

Der Herstellungsprozess wird nun noch für die Serienanwendung verbessert. Forschungsbedarf gibt es noch hinsichtlich der Harz- bzw. Kunststoffkomponente: Die Kohlenstofffasern halten die oftmalige Belastung zwar problemlos aus, aber die Matrix rundherum könnte irgendwann doch geringfügig ihre Form ändern. An der TU Wien werden derzeit noch Ideen zur Verbesserung der Kunststoffkomponente untersucht.

Die neuartigen Federn sind äußerst korrosions- und chemikalienbeständig. Der entscheidende Vorteil ist allerdings die Gewichtsersparnis. Bei gleicher Steifigkeit reduziert sich die Masse um siebzig bis achtzig Prozent verglichen mit herkömmlichen Stahlfedern. Gerade in der Automobilindustrie ist man sehr auf Gewichtseinsparungen bedacht – eine geringere Masse bedeutet letztlich auch weniger Treibstoffverbrauch. Ganz entscheidend ist das Thema Gewicht natürlich im Luft- und Raumfahrtbereich.

„Zunächst werden sich Karbon-Faser-Verbund-Federn sicher im gehobenen Marktsegment durchsetzen“, prognostiziert Richard Zemann, „doch langfristig soll die neue Technologie auch in Massenprodukten verwendet werden – das ist unser erklärtes Ziel.“

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/federleicht/

Rückfragehinweis:
Dipl.-Ing. Richard Zemann
Institut für Fertigungstechnik und Hochleistungslasertechnik
Technische Universität Wien
Adolf Blamauerg. 1-3, 1030 Wien
T: +43-1-58801-31165
M: +43-676-5229319
richard.zemann@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften