Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenflüsse

17.03.2016

Üblicherweise ist die Bewegung von Elektronen in einem realen Material ziemlich verschieden vom Wasserstrom in einem Fluss. Doch in außergewöhnlichen Materialien, wie dem Metalloxid PdCoO2, können solche „Elektronenflüsse” existieren, wie theoretisch vor mehr als fünfzig Jahren vorhergesagt und jetzt von Wissenschaftlern des MPI CPfS demonstriert.

Schon als die Elektrizität entdeckt wurde, hatten die Wissenschaftler ein Bild aus dem Alltag vor Augen, dass Elektronen in einem Metall wie Wasser in einem Rohr fließen.


Einer der erzeugten „Elektronenflüsse": Die Strömung erfolgt entlang des lila-Kanals und wird mit Instrumenten untersucht, die mit den farbigen Teilen der Vorrichtung verbunden sind.

MPI CPfS

Obwohl wir dieses Bild noch immer in der Sprache verwenden (ein elektrischer „Strom“ „fließt“), wissen wir mittlerweile, dass diese Vorstellung eigentlich nicht zutrifft: Die Bewegung der Elektronen wird ständig dadurch gestört, dass sie mit den Atomen zusammenprallen, aus denen das Metall besteht. Der Ablauf dieser elektronischen Fließprozesse ist deshalb nicht annähernd so aufregend wie die von Flüssigkeiten, die wir als Wellen, Wirbel und Turbulenzen beobachten können, wenn wir an einem Fluss sitzen.

Damit "Elektronenflüsse" existieren können, muss man außergewöhnliche Materialien finden, in denen die Kollisionen der Elektronen mit den Atomen tausendfach schwächer als üblich sind. Obwohl diese Möglichkeit - bekannt unter dem Begriff "elektronische Hydrodynamik" - vor mehr als fünfzig Jahren theoretisch vorhergesagt wurde, konnte dieses ungewöhnliche Verhalten erst jetzt in einem Material beobachtet werden.

In der jüngsten Ausgabe der Zeitschrift Science (Band 351, 4. März 2016; siehe auch den “Perspectives” Artikel von J. Zaanen), berichten gleichzeitig drei Artikel von experimentellen Erfolgen: Die Gruppen von Philip Kim in Harvard und Andre Geim in Manchester arbeiteten mit Graphen, der Beitrag der Gruppen von Andrew Mackenzie und Philip Moll vom Max-Planck-Institut für Chemische Physik fester Stoffe Dresden basiert jedoch auf einem Metalloxid.

Das Material unserer Wahl, PdCoO2, weist eine erstaunlich hohe elektrische Leitfähigkeit auf. Diese hohe Leitfähigkeit ist ein Indiz für eine sehr geringe Störung der Elektronen durch die Atome in diesem Material und hat uns motiviert, hier nach hydrodynamischen Effekten zu suchen. Dabei haben wir nach einem Phänomen gesucht, das jeder kennt, der in Flüssen baden war: Flüsse fließen am Ufer langsamer als in der Mitte des Flusses. Dieser Effekt entsteht durch den Zusammenstoß der Wassermoleküle mit dem Ufer, dem Rand des Flusses.

Auch „Elektronenflüsse“ sollten durch diese Zusammenstöße mit dem „Ufer“, also der Oberfläche eines Drahts, ähnlich beeinträchtigt werden. Um deren Anwesenheit aufzudecken, frästen wir sukzessive engere Kanäle in das Material und untersuchten, wie leicht die Elektronen durch sie fließen konnten.

Durch Vergleich unserer Ergebnisse mit theoretischen Modellen hydrodynamischer Effekte konnten wir zeigen, dass wir in der Tat die lange vorhergesagten Elektronenflüsse erzeugen können. Unsere Erkenntnisse setzen neue Maßstäbe bei der Erforschung, wie sich Elektronen in ultrareinen Materialien verhalten. Die in der Strömung des Wassers vorhandene Vielfalt könnte auch für den Fluss von Elektronen beobachtbar sein, und etwas von dieser Reichhaltigkeit könnte eines Tages zur Erfindung von neuen elektronischen Geräten führen. Wir hoffen, eine führende Rolle bei diesen Entwicklungen zu spielen.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen. Gemeinsam untersuchen Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker mit modernsten Instrumenten und Methoden, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Weitere Informationen:

http://www.cpfs.mpg.de/2664354/20160310

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise