Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenflüsse

17.03.2016

Üblicherweise ist die Bewegung von Elektronen in einem realen Material ziemlich verschieden vom Wasserstrom in einem Fluss. Doch in außergewöhnlichen Materialien, wie dem Metalloxid PdCoO2, können solche „Elektronenflüsse” existieren, wie theoretisch vor mehr als fünfzig Jahren vorhergesagt und jetzt von Wissenschaftlern des MPI CPfS demonstriert.

Schon als die Elektrizität entdeckt wurde, hatten die Wissenschaftler ein Bild aus dem Alltag vor Augen, dass Elektronen in einem Metall wie Wasser in einem Rohr fließen.


Einer der erzeugten „Elektronenflüsse": Die Strömung erfolgt entlang des lila-Kanals und wird mit Instrumenten untersucht, die mit den farbigen Teilen der Vorrichtung verbunden sind.

MPI CPfS

Obwohl wir dieses Bild noch immer in der Sprache verwenden (ein elektrischer „Strom“ „fließt“), wissen wir mittlerweile, dass diese Vorstellung eigentlich nicht zutrifft: Die Bewegung der Elektronen wird ständig dadurch gestört, dass sie mit den Atomen zusammenprallen, aus denen das Metall besteht. Der Ablauf dieser elektronischen Fließprozesse ist deshalb nicht annähernd so aufregend wie die von Flüssigkeiten, die wir als Wellen, Wirbel und Turbulenzen beobachten können, wenn wir an einem Fluss sitzen.

Damit "Elektronenflüsse" existieren können, muss man außergewöhnliche Materialien finden, in denen die Kollisionen der Elektronen mit den Atomen tausendfach schwächer als üblich sind. Obwohl diese Möglichkeit - bekannt unter dem Begriff "elektronische Hydrodynamik" - vor mehr als fünfzig Jahren theoretisch vorhergesagt wurde, konnte dieses ungewöhnliche Verhalten erst jetzt in einem Material beobachtet werden.

In der jüngsten Ausgabe der Zeitschrift Science (Band 351, 4. März 2016; siehe auch den “Perspectives” Artikel von J. Zaanen), berichten gleichzeitig drei Artikel von experimentellen Erfolgen: Die Gruppen von Philip Kim in Harvard und Andre Geim in Manchester arbeiteten mit Graphen, der Beitrag der Gruppen von Andrew Mackenzie und Philip Moll vom Max-Planck-Institut für Chemische Physik fester Stoffe Dresden basiert jedoch auf einem Metalloxid.

Das Material unserer Wahl, PdCoO2, weist eine erstaunlich hohe elektrische Leitfähigkeit auf. Diese hohe Leitfähigkeit ist ein Indiz für eine sehr geringe Störung der Elektronen durch die Atome in diesem Material und hat uns motiviert, hier nach hydrodynamischen Effekten zu suchen. Dabei haben wir nach einem Phänomen gesucht, das jeder kennt, der in Flüssen baden war: Flüsse fließen am Ufer langsamer als in der Mitte des Flusses. Dieser Effekt entsteht durch den Zusammenstoß der Wassermoleküle mit dem Ufer, dem Rand des Flusses.

Auch „Elektronenflüsse“ sollten durch diese Zusammenstöße mit dem „Ufer“, also der Oberfläche eines Drahts, ähnlich beeinträchtigt werden. Um deren Anwesenheit aufzudecken, frästen wir sukzessive engere Kanäle in das Material und untersuchten, wie leicht die Elektronen durch sie fließen konnten.

Durch Vergleich unserer Ergebnisse mit theoretischen Modellen hydrodynamischer Effekte konnten wir zeigen, dass wir in der Tat die lange vorhergesagten Elektronenflüsse erzeugen können. Unsere Erkenntnisse setzen neue Maßstäbe bei der Erforschung, wie sich Elektronen in ultrareinen Materialien verhalten. Die in der Strömung des Wassers vorhandene Vielfalt könnte auch für den Fluss von Elektronen beobachtbar sein, und etwas von dieser Reichhaltigkeit könnte eines Tages zur Erfindung von neuen elektronischen Geräten führen. Wir hoffen, eine führende Rolle bei diesen Entwicklungen zu spielen.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen. Gemeinsam untersuchen Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker mit modernsten Instrumenten und Methoden, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Weitere Informationen:

http://www.cpfs.mpg.de/2664354/20160310

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

nachricht Wenn Eiweiße einander die Hand geben
19.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics