Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenflüsse

17.03.2016

Üblicherweise ist die Bewegung von Elektronen in einem realen Material ziemlich verschieden vom Wasserstrom in einem Fluss. Doch in außergewöhnlichen Materialien, wie dem Metalloxid PdCoO2, können solche „Elektronenflüsse” existieren, wie theoretisch vor mehr als fünfzig Jahren vorhergesagt und jetzt von Wissenschaftlern des MPI CPfS demonstriert.

Schon als die Elektrizität entdeckt wurde, hatten die Wissenschaftler ein Bild aus dem Alltag vor Augen, dass Elektronen in einem Metall wie Wasser in einem Rohr fließen.


Einer der erzeugten „Elektronenflüsse": Die Strömung erfolgt entlang des lila-Kanals und wird mit Instrumenten untersucht, die mit den farbigen Teilen der Vorrichtung verbunden sind.

MPI CPfS

Obwohl wir dieses Bild noch immer in der Sprache verwenden (ein elektrischer „Strom“ „fließt“), wissen wir mittlerweile, dass diese Vorstellung eigentlich nicht zutrifft: Die Bewegung der Elektronen wird ständig dadurch gestört, dass sie mit den Atomen zusammenprallen, aus denen das Metall besteht. Der Ablauf dieser elektronischen Fließprozesse ist deshalb nicht annähernd so aufregend wie die von Flüssigkeiten, die wir als Wellen, Wirbel und Turbulenzen beobachten können, wenn wir an einem Fluss sitzen.

Damit "Elektronenflüsse" existieren können, muss man außergewöhnliche Materialien finden, in denen die Kollisionen der Elektronen mit den Atomen tausendfach schwächer als üblich sind. Obwohl diese Möglichkeit - bekannt unter dem Begriff "elektronische Hydrodynamik" - vor mehr als fünfzig Jahren theoretisch vorhergesagt wurde, konnte dieses ungewöhnliche Verhalten erst jetzt in einem Material beobachtet werden.

In der jüngsten Ausgabe der Zeitschrift Science (Band 351, 4. März 2016; siehe auch den “Perspectives” Artikel von J. Zaanen), berichten gleichzeitig drei Artikel von experimentellen Erfolgen: Die Gruppen von Philip Kim in Harvard und Andre Geim in Manchester arbeiteten mit Graphen, der Beitrag der Gruppen von Andrew Mackenzie und Philip Moll vom Max-Planck-Institut für Chemische Physik fester Stoffe Dresden basiert jedoch auf einem Metalloxid.

Das Material unserer Wahl, PdCoO2, weist eine erstaunlich hohe elektrische Leitfähigkeit auf. Diese hohe Leitfähigkeit ist ein Indiz für eine sehr geringe Störung der Elektronen durch die Atome in diesem Material und hat uns motiviert, hier nach hydrodynamischen Effekten zu suchen. Dabei haben wir nach einem Phänomen gesucht, das jeder kennt, der in Flüssen baden war: Flüsse fließen am Ufer langsamer als in der Mitte des Flusses. Dieser Effekt entsteht durch den Zusammenstoß der Wassermoleküle mit dem Ufer, dem Rand des Flusses.

Auch „Elektronenflüsse“ sollten durch diese Zusammenstöße mit dem „Ufer“, also der Oberfläche eines Drahts, ähnlich beeinträchtigt werden. Um deren Anwesenheit aufzudecken, frästen wir sukzessive engere Kanäle in das Material und untersuchten, wie leicht die Elektronen durch sie fließen konnten.

Durch Vergleich unserer Ergebnisse mit theoretischen Modellen hydrodynamischer Effekte konnten wir zeigen, dass wir in der Tat die lange vorhergesagten Elektronenflüsse erzeugen können. Unsere Erkenntnisse setzen neue Maßstäbe bei der Erforschung, wie sich Elektronen in ultrareinen Materialien verhalten. Die in der Strömung des Wassers vorhandene Vielfalt könnte auch für den Fluss von Elektronen beobachtbar sein, und etwas von dieser Reichhaltigkeit könnte eines Tages zur Erfindung von neuen elektronischen Geräten führen. Wir hoffen, eine führende Rolle bei diesen Entwicklungen zu spielen.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen. Gemeinsam untersuchen Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker mit modernsten Instrumenten und Methoden, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Weitere Informationen:

http://www.cpfs.mpg.de/2664354/20160310

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie