Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Wiederverwertung von Lithium-Ionen-Batterien – Forschungsprojekt gestartet

06.09.2016

Gefördert vom Bundesministerium für Bildung und Forschung (BMBF) wird ein innovatives und hocheffizientes Verfahren entwickelt, um wertvolle Batteriematerialien möglichst ressourcenschonend zurückzugewinnen und wieder für neue Batterien einzusetzen. Ziel des Projekts NEW-BAT ist es, einen robusten, energieeffizienten und kostengünstigen Prozess zu entwickeln, der breit eingesetzt werden kann.

Lithium-Ionen-Batterien sind eine Schlüsseltechnologie für die Energiewende und Elektromobilität. Die große Verbreitung dieser Energiespeicher führt zu einem hohen Aufkommen an ausgemusterten Batterien und Akkus, die eine wertvolle Rohstoffquelle sind.


Wertvolle Batteriematerialien sollen durch ein neues Verfahren zurückgewonnen werden.

© K. Selsam-Geißler, Fraunhofer ISC


Mit der elektrohydraulischen Zerkleinerungsanlage können Verbundmaterialien selektiv aufgetrennt werden.

© Impulstec

Aktuell werden für gebrauchte Batterien und Produktionsabfälle aus der Batteriefertigung energieintensive metallurgische Recyclingmethoden eingesetzt. Damit können allerdings nur elementare Metalle zurückgewonnen werden. Die Wertschöpfung beruht deshalb meist nur auf den Metallwerten von beispielsweise Nickel, Cobalt oder Mangan.

Wertvoller wäre eine Rückgewinnung der eigentlichen Batteriematerialien, die bereits mit hohem Aufwand aus den Grundelementen hergestellt wurden, beispielsweise hochwertige Lithium-Metalloxide und bisher gar nicht recyclingfähige Kohlenstoffverbindungen. Das würde Energie und Kosten sparen und wertvolle Ressourcen wie Lithium nachhaltig sichern.

Hier setzt das Projekt NEW-BAT an, das mit rund 1,6 Millionen Euro im Rahmen der BMBF-Fördermaßnahme »r4- Forschung zur Bereitstellung wirtschaftsstrategischer Rohstoffe« gefördert wird. Unter der Leitung von Andreas Bittner von der Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS arbeiten Wissenschaftler und Ingenieure aus Forschung und Industrie an einem neuen Verfahren, mit dem genau diese wertvollen Batteriematerialien komplett aus den Altbatterien zurückgewonnen und so aufbereitet werden, dass sie direkt wieder in neuen Batterien eingesetzt werden können.

Intelligent zerkleinern statt ziellos zerschreddern

Das Kernstück des neuen Recyclingprozesses ist die elektrohydraulische Zerkleinerung mit Hilfe von Schockwellen. Bei diesem Verfahren wird das zu zerkleinernde Material in ein flüssiges Medium, zum Beispiel Wasser, eingebracht. Über elektrische Entladung werden Schockwellen freigesetzt, die durch das Medium Wasser sehr gleichmäßig an das Material weitergegeben werden.

Damit ist es möglich, Komposite quasi berührungsfrei an den Materialgrenzen aufzuspalten und so eine einfache und schonende Separation der Komponenten zu erreichen. Das Materialgemisch aus den verschiedenen Batteriekomponenten – Kathode, Anode, Elektrolyt, Separator sowie Zell- und Batteriegehäuse – kann danach effizienten Trennverfahren unterzogen werden. Um möglichst reines Batteriematerial zu erhalten, werden Verfahren eingesetzt, die sowohl physikalische Eigenschaften, wie unterschiedliche Korngröße und Dichte, als auch die unterschiedliche chemische Zusammensetzung der Materialien zur Separation nutzen.

Das Verfahren ist besonders energieeffizient, da im Gegensatz zu metallurgischen Prozessen keine hohen Temperaturen benötig werden, und kann für Produktionsausschüsse sowie für Altprodukte eingesetzt werden.

Aufbereiten mit funktionellen Beschichtungen

Da insbesondere die Elektrodenmaterialien der Batterien im Lauf der Batterienutzung altern, müssen die Recyclingmaterialien einer genauen Prüfung und Aufbereitung unterzogen werden, um ihre ursprüngliche Qualität wiederherzustellen. Mit speziellen Niedertemperaturverfahren können beim Projektpartner Fraunhofer ISC insbesondere Materialien von Lithium-Ionen-Batterien von unerwünschten Degradationsprodukten an den Oberflächen befreit und Defekte in den Kristallstrukturen behoben werden. Diese Aufbereitung kann mit einer Veredelung in Form einer Kern-Schale-Beschichtung verknüpft werden, die das recycelte Material hinsichtlich der Lebensdauer sowie der Lade- und Entladeeigenschaften deutlich verbessern.

Das Projektteam

Zwei Partner aus der Wissenschaft – die Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Alzenau/Hanau als Koordinator und ihr Mutterinstitut, das Fraunhofer-Institut für Silicatforschung ISC in Würzburg – bringen ihre Expertise auf den Gebieten Recycling, Substitution und Ressourcenstrategien sowie Materialentwicklung und elektrochemische Energiespeicher ein. Vervollständigt wird das Konsortium durch Industriepartner mit gebündelter Anwendungskompetenz aus Recycling, Batterien und Anlagenbau, die Lars Walch GmbH & Co. KG in Baudenbach, die GRS Service GmbH in Hamburg und die ImpulsTec GmbH in Dresden.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Weitere Berichte zu: Batteriematerialien ISC IWKS Recycling Schockwellen Silicatforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE