Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutsche Forschungsgemeinschaft (DFG) finanziert zweites Laserbearbeitungszentrum an der BTU Cottbus

02.06.2010
DFG anerkennt Profilierung der BTU im Bereich der Materialforschung

Zweites Laserbearbeitungszentrum eröffnet noch breitere Anwendungsmöglichkeiten im Bereich der Fügeverfahren

Die Deutsche Forschungsgemeinschaft hat dem Lehrstuhl Fügetechnik von Prof. Dr.-Ing. Vesselin Michailov einen neuen robotergestützten Laser in Höhe von rund 1,4 Mio. € bewilligt. Dies ist für die BTU Cottbus ein besonderer Erfolg, denn erst im April konnte die BTU Cottbus ein in seiner Konfiguration einmaliges Laserbearbeitungszentrum im Forschungszentrum für Leichtbauwerkstoffe Panta Rhei einweihen, das ebenfalls vom Lehrstuhl Fügetechnik eingesetzt wird.

Während mit dem schon vorhandenen und mit einem 15 kW Faserlaser ausgestatteten Laserbearbeitungszentrum vor allem Metalle bearbeitet werden, geht es bei dem neuen robotergestützten CO2-Laser, der im Laufe des Jahres an der BTU aufgebaut wird, um das Zusammenfügen von überwiegend Nicht-Metallen. Der Kohlendioxidlaser hat eine Wellenlänge von 10,6 Mikrometer, welche die schweißtechnische Verarbeitung von Keramiken und Kunststoffen ermöglicht. Darüber hinaus kann er aber auch neuartige Bauteile aus zusammengesetzten Materialien wie Metall-Keramik- und Kunststoff-Keramik-Verbunde herstellen. Dieses hochmoderne Fügeverfahren eröffnet neue Werkstoffdesignmöglichkeiten in den landeswichtigen Wirtschaftszweigen wie Energieanlagen-, Automobil- und Schienenfahrzeugbau sowie Luft- und Raumfahrt.

In einer weiteren Entwicklung des Lehrstuhls soll der Laserstrahl mit einem Plasmastrahl (Gasentladung) gekoppelt werden. Mit dem neuen Hybridsystem (Laser und Plasma) lassen sich Aufheiz- und Abkühlgeschwindigkeiten sowie Wunschtemperaturprofile präzise steuern. Der neue CO2-Laser soll zudem für die generative Herstellung komplexer Bauteile mit inneren Bohrungen eingesetzt werden. Indem Schweißnähte horizontal über einander aufgebaut werden, können mittels verschiedener Schweißzusatzwerkstoffe (Schlicker, Pulver oder Draht) nach dem so genannten „Multi-Layer-Manufacturing-Verfahren“ komplexe Elemente mit inneren Hohlformen „gebaut“ werden. Mit den innovativen Herstellungstechnologien werden die BTU-Studierende im Maschinenbau an modernsten Geräten für Forschung und Praxis ausgebildet. Schon jetzt hat der BTU-Maschinenbau-Studiengang einen Spitzenplatz beim CHE-Ranking 2010 erreicht. Die Attraktivität der Lehre und Forschung wird durch diese Ausstattung weiter gesteigert.

Das zweite Laserbearbeitungszentrum an der BTU Cottbus erweitert enorm die Palette der zu untersuchenden Werkstoffe, Bauteile und Anwendungsgebiete. Die fortschreitende Entwicklung von neuartigen Technologien und deren industrieller Einsatz, z. B. in der Automobil-, Schienenfahrzeug-, Luft- und Raumfahrtindustrie sowie in den Energieanlagen, erfordert neben der Anpassung und Verbesserung etablierter Fügetechniken auch die Entwicklung neuer Fügeverfahren mit hybriden und gekoppelten Prozessen. Die BTU Cottbus bietet sich mit ihrem Spitzen-Know-How und ihrer Ausstattung auch für Drittmittelprojekte in den bereits in der Region Berlin/Brandenburg ansässigen Unternehmen für zahlreiche Anwendungs- und Einsatzgebiete an. Und nicht zuletzt verhilft das DFG-Großforschungsgerät der BTU zu größerer Reputation national und international.

Katrin Juntke | idw
Weitere Informationen:
http://www.tu-cottbus.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie