Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutsche Forschungsgemeinschaft (DFG) finanziert zweites Laserbearbeitungszentrum an der BTU Cottbus

02.06.2010
DFG anerkennt Profilierung der BTU im Bereich der Materialforschung

Zweites Laserbearbeitungszentrum eröffnet noch breitere Anwendungsmöglichkeiten im Bereich der Fügeverfahren

Die Deutsche Forschungsgemeinschaft hat dem Lehrstuhl Fügetechnik von Prof. Dr.-Ing. Vesselin Michailov einen neuen robotergestützten Laser in Höhe von rund 1,4 Mio. € bewilligt. Dies ist für die BTU Cottbus ein besonderer Erfolg, denn erst im April konnte die BTU Cottbus ein in seiner Konfiguration einmaliges Laserbearbeitungszentrum im Forschungszentrum für Leichtbauwerkstoffe Panta Rhei einweihen, das ebenfalls vom Lehrstuhl Fügetechnik eingesetzt wird.

Während mit dem schon vorhandenen und mit einem 15 kW Faserlaser ausgestatteten Laserbearbeitungszentrum vor allem Metalle bearbeitet werden, geht es bei dem neuen robotergestützten CO2-Laser, der im Laufe des Jahres an der BTU aufgebaut wird, um das Zusammenfügen von überwiegend Nicht-Metallen. Der Kohlendioxidlaser hat eine Wellenlänge von 10,6 Mikrometer, welche die schweißtechnische Verarbeitung von Keramiken und Kunststoffen ermöglicht. Darüber hinaus kann er aber auch neuartige Bauteile aus zusammengesetzten Materialien wie Metall-Keramik- und Kunststoff-Keramik-Verbunde herstellen. Dieses hochmoderne Fügeverfahren eröffnet neue Werkstoffdesignmöglichkeiten in den landeswichtigen Wirtschaftszweigen wie Energieanlagen-, Automobil- und Schienenfahrzeugbau sowie Luft- und Raumfahrt.

In einer weiteren Entwicklung des Lehrstuhls soll der Laserstrahl mit einem Plasmastrahl (Gasentladung) gekoppelt werden. Mit dem neuen Hybridsystem (Laser und Plasma) lassen sich Aufheiz- und Abkühlgeschwindigkeiten sowie Wunschtemperaturprofile präzise steuern. Der neue CO2-Laser soll zudem für die generative Herstellung komplexer Bauteile mit inneren Bohrungen eingesetzt werden. Indem Schweißnähte horizontal über einander aufgebaut werden, können mittels verschiedener Schweißzusatzwerkstoffe (Schlicker, Pulver oder Draht) nach dem so genannten „Multi-Layer-Manufacturing-Verfahren“ komplexe Elemente mit inneren Hohlformen „gebaut“ werden. Mit den innovativen Herstellungstechnologien werden die BTU-Studierende im Maschinenbau an modernsten Geräten für Forschung und Praxis ausgebildet. Schon jetzt hat der BTU-Maschinenbau-Studiengang einen Spitzenplatz beim CHE-Ranking 2010 erreicht. Die Attraktivität der Lehre und Forschung wird durch diese Ausstattung weiter gesteigert.

Das zweite Laserbearbeitungszentrum an der BTU Cottbus erweitert enorm die Palette der zu untersuchenden Werkstoffe, Bauteile und Anwendungsgebiete. Die fortschreitende Entwicklung von neuartigen Technologien und deren industrieller Einsatz, z. B. in der Automobil-, Schienenfahrzeug-, Luft- und Raumfahrtindustrie sowie in den Energieanlagen, erfordert neben der Anpassung und Verbesserung etablierter Fügetechniken auch die Entwicklung neuer Fügeverfahren mit hybriden und gekoppelten Prozessen. Die BTU Cottbus bietet sich mit ihrem Spitzen-Know-How und ihrer Ausstattung auch für Drittmittelprojekte in den bereits in der Region Berlin/Brandenburg ansässigen Unternehmen für zahlreiche Anwendungs- und Einsatzgebiete an. Und nicht zuletzt verhilft das DFG-Großforschungsgerät der BTU zu größerer Reputation national und international.

Katrin Juntke | idw
Weitere Informationen:
http://www.tu-cottbus.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise