Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biokompatible Graphen-Transistoren lesen zelluläre Signale

02.12.2011
In Zukunft sollen kleineste Implantate zerstörte Sinneszellen ersetzen und Menschen Sehen, Hören oder das Bewegen von Armen und Beinen ermöglichen.

Doch weil die bisher verwendete Silizium-Technologie in biologischer Umgebung erhebliche Probleme aufwirft, sucht die Wissenschaft nach besseren Materialien. Forscher der Technischen Universität München (TUM) und des Forschungszentrums Jülich haben nun gezeigt, dass auf Basis des biologisch gut verträglichen Graphens solche Schnittstellen zwischen lebenden Zellen und Mikroelektronik aufzubauen sind. Über ihre Ergebnisse berichtet das Fachmagazin „Advanced Materials“.


Herzmuskelzellen auf einem Sensor-Array
Bild: TUM

Seit vielen Jahren entwickelt die Medizintechnik Implantate, die zerstörte Sinneszellen ersetzen und beispielsweise tauben Patienten das Hören wieder ermöglichen sollen. Doch bisher sind die Implantate um ein Vielfaches größer als die Nervenzellen, mit denen sie kommunizieren sollen. Die Silizium-basierte Mikroelektronik passt weder zur Flexibilität biologischer Zellen noch zu deren wässriger Umgebung. Die Wissenschaft sucht daher nach neuen, besser geeigneten Materialien.

Als eine besser geeignete Alternative könnte sich Graphen erweisen. Es besteht im Wesentlichen aus einem zweidimensionalen Netzwerk von Kohlenstoffatomen, bietet hervorragende elektronische Eigenschaften, ist chemisch stabil und biologisch inert. Es kann leicht zu flexiblen Folien verarbeitet werden und sollte sich in größeren Mengen kostengünstig herstellen lassen. Die Ergebnisse der Forschungsgruppe um Jose A. Garrido, Wissenschaftler am Walter Schottky Institut der TU München, bestätigen nun die hervorragende Eignung von Graphen und ebnen den Weg zu weiteren Untersuchungen der Einsatzmöglichkeiten dieses Materials für bioelektronische Anwendungen.

Ausgangspunkt für die im Fachmagazin „Advanced Materials“ beschriebenen Arbeiten war ein Aufbau mit 16 Feldeffekttransistoren, bei denen das Graphen-Netz in direktem Kontakt zu den biologischen Zellen und der sie umgebenden wässrigen Lösung steht (graphene solution-gate-field-effect transistors, G-SGFET). Die Graphen-Netze sowie die Elektronik wurde mit in der Halbleitertechnologie üblichen Verfahren hergestellt. „Der Sensormechanismus dieser Geräte ist relativ einfach“, sagt Jose Garrido. „Änderungen der elektrischen und chemischen Umgebung in der Nähe des Gate-Bereichs des Transistors verändern den Transistorstrom, und den können wir messen.“

Zu Anfang ihrer Versuche ließen die Forscher eine Schicht Herzmuskelzellen über die Transistoren wachsen. Mit ihren Graphen-Transistoren konnten sie anschließend die Aktionspotenziale der einzelnen Zellen mit hoher räumlicher und zeitlicher Auflösung messen. Die für Herzmuskelzellen typische Ausbreitung der Aktionspotenziale über die Schicht, den Herzschlag, konnten sie elektronisch verfolgen. Als sie der Nährlösung das Stresshormon Noradrenalin beigaben, reagierten die Herzzellen mit erhöhter Schlagfrequenz. Vergleichsmessungen mit Silizium-basierten Elektronikbausteinen zeigten, das die Graphen-Transistoren ein deutlich geringeres Grundrauschen besitzen.

„Ein großer Teil unserer laufenden Forschung ist nun auf die weitere Verringerung des Eigenrauschens der Graphen-Sensoren ausgerichtet“, sagt Jose Garrido, „und auf die Übertragung dieser Technologie auf flexible Substrate wie Parylen und Kapton, die beide bereits in Implantaten verwendet werden. Außerdem arbeiten wir daran, auch die räumliche Auflösung der Sensoren zu verbessern.“ Parallel dazu untersuchen die Wissenschaftler in Kooperation mit dem in Paris ansässigen Vision-Institute die Biokompatibilität von Graphen-Schichten mit Kulturen von Seh-Nervenzellen. In einem breit angelegten europäischen Projekt namens NEUROCARE erforschen sie die Anwendungsmöglichkeiten für Gehirn-Implantate.

Diese Forschung wird unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms „Graphen“ (SPP 1459), der International Helmholtz Research School BIOSOFT, der Bayerischen Graduate School CompInt, des TUM Institute for Advanced Study und des Exzellenzclusters Nanosystems Initiative Munich (NIM).

Originalpublikation:
Graphene Transistor Arrays for Recording Action Potentials from Electrogenic Cells;
Lucas H. Hess, Michael Jansen, Vanessa Maybeck, Moritz V. Hauf, Max Seifert, Martin Stutzmann, Ian D. Sharp, Andreas Offenhaeusser and Jose A. Garrido.
Advanced Materials 2011, 23, 5045-5049. DOI: 10.1002/adma.201102990.
Link: http://onlinelibrary.wiley.com/doi/10.1002/adma.201102990/suppinfo
Kontakt:
Dr. J. A. Garrido
Walter Schottky Institute
Technische Universität München
Am Coulombwall 4
85748 Garching, Germany
Tel: +49 89 289 12766
E-Mail: garrido@wsi.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.wsi.tum.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie