Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bindungsverhältnisse bestimmen Wärmeleitfähigkeit

03.05.2011
Jülicher und Aachener Forscher untersuchen phasenwechselnde Materialien

Optische Datenträger wie DVDs, Blu-rays oder CD-RWs speichern Daten in Schichten aus sogenannten Phasenwechselmaterialien. Zukünftig sollen diese Materialien die Entwicklung schneller, nichtflüchtiger und energiesparender Arbeitsspeicher ermöglichen.

Eine Voraussetzung dafür ist eine niedrige Wärmeleitfähigkeit. Phasenwechselnde Materialien zeigen auch im kristallinen Zustand eine überraschend niedrige Wärmeleitfähigkeit. Dies beschreibt ein internationales Forscherteam unter Beteiligung Jülicher und Aachener Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift "Advanced Functional Materials" (DOI: 10.1002/adfm.201002274). Ihre Erkenntnisse sollen die gezielte Suche nach Materialien mit den gewünschten Eigenschaften vereinfachen.

Phasenwechselmaterialien gehören zu den Favoriten für die Entwicklung eines "Universalspeichers", der schnell ist wie ein DRAM (Dynamisches RAM), eine hohe Speicherdichte besitzt, stets einsatzbereit ist und seine Daten auch beim versehentlichen Abschalten nicht verliert. Daten sollen dabei in kleinsten Bereichen unterschiedlicher elektrischer Leitfähigkeit gespeichert werden, die durch Erhitzen mit Hilfe von Strompulsen eingeschrieben werden. Dabei ändern sich die atomare Ordnung des Materials und seine elektrische Leitfähigkeit.

Bei Wärmezufuhr schalten phasenwechselnde Materialien von ungeordnet (amorph) in geordnet (kristallin) um und umgekehrt, wobei sich die physikalischen Eigenschaften ändern. Dies macht sich die Industrie schon seit Jahren bei optischen Datenträgern wie DVDs, Blu-rays oder CD-RWs zunutze. Per Laser werden dabei die atomare Struktur und damit die optischen Eigenschaften in kleinsten Bereichen der Scheiben verändert. Dadurch werden die Bits eingeschrieben, die ebenfalls per Laser wieder ausgelesen werden können.

"Um energiesparende und dicht gepackte elektronische Datenspeicher zu verwirklichen, ist es wichtig, dass sich beim Einschreiben der Daten die elektrische Leitfähigkeit deutlich verändert, die Energie aber möglichst lokalisiert bleibt", erläutert Dr. Raphaël Hermann vom Jülich Centre for Neutron Science und Gastprofessor an der Universität Lüttich. "Phasenwechselnde Materialien eignen sich sehr gut, weil sie Wärme nicht nur im ungeordneten, sondern auch im kristallinen Zustand schlecht leiten, anders als etwa Halbleiter", ergänzt Prof. Matthias Wuttig von der RWTH Aachen. Hermann und Wuttig untersuchten als Teil eines internationalen Forscherteams die Ursachen für dieses für Physiker überraschende Materialverhalten an Legierungen aus Germanium, Antimon und Tellur. Mit Hilfe von aufwendigen Streuuntersuchungen an der Europäischen Synchrotronstrahlungsquelle ESRF in Grenoble zeigten sie, dass die Bindungsverhältnisse zwischen den Atomen im kristallinen Zustand sowie Abweichungen von der perfekten Gitterstruktur die Weiterleitung von Schwingungen durch das Material beeinflussen und damit die Wärmeleitfähigkeit vermindern.

"Ausgangspunkt unserer Untersuchungen war die Feststellung unserer japanischen Kollegen, dass das amorphe Material härter ist als das kristalline", erläutert Hermann. "Das widersprach allen Annahmen, aber die gemessenen stärkeren Bindungskräfte zwischen den Atomen im amorphen Zustand passten dazu." Der Jülicher untersuchte, wie die Atome in den Proben schwingen, zum einen lokal im Bereich der Atome, zum anderen über längere Reichweiten. "Im kristallinen Material fanden wir härtere Schwingungen für lange Reichweiten und bessere Leitfähigkeit für Schall als im amorphen. Das ist normal und hängt mit einer Zunahme der Ordnung zusammen. Aber bei den Schwingungen mit kurzer Reichweite im Kristall erlebten wir eine Überraschung: Sie waren weicher. Die Nahordnung im kristallinen Material ist also geringer als im amorphen. Das ist sehr ungewöhnlich."

Auf Basis aller Messergebnisse entwickelten die Aachener Forscher um Wuttig ein Modell, das die scheinbaren Widersprüche erklärt: "Normalerweise korreliert die Ausbreitung von Schallwellen im Material mit der Wärmeleitfähigkeit. Bei den phasenwechselnden Materialien ist das aber nicht der Fall. Das liegt daran, dass die Atome im kristallinen Zustand resonant gebunden sind, also Atompaare sich Bindungen teilen. Hingegen binden die Atome im amorphen Material kovalent, also stärker. Also ist das kristalline Material weicher und die Atome schwingen sanfter. Zusätzlich gibt es mehr Unordnung im lokalen Bereich. Beides beeinträchtigt die Leitfähigkeit für die Schwingungen, die die Wärme transportieren und teilweise kurzwellig sind aber nicht für die langwelligen Schallwellen." Die Forscher gehen davon aus, dass ihre Erkenntnisse die gezielte Suche nach Materialien mit den gewünschten Eigenschaften vereinfachen wird.

Originalveröffentlichung:
Phase change materials: Vibrational softening upon crystallization and its impact on thermal properties; Matsunaga et al; Advanced Funtional Materials;

DOI: 10.1002/adfm.201002274

Weitere Informationen:

Jülich Aachen Research Alliance:
www.jara.org
Forschungszentrum Jülich:
www.fz-juelich.de
Forschung am Institut Streumethoden (PGI-4/JCNS-2):
http://www.fz-juelich.de/pgi/pgi-4/
Zur Nachwuchsgruppe von Raphaël Hermann:
http://www.fz-juelich.de/pgi/pgi-4/DE/Forschung/NachwuchsgruppeHermann/artikel.html
Zur Webseite von Matthias Wuttig:
http://www.physik.rwth-aachen.de/institute/institut-ia/mitarbeiter/prof-dr-m-wuttig/
Ansprechpartner:
Dr. Raphaël Hermann, Jülich Centre for Neutron Science JCNS,
Tel. 02461 61-4786,
E-Mail: r.hermann@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Jülich Centre for Neutron Science JCNS / Peter Grünberg Institut Tel. 02461 61-6048,

E-Mail: a.wenzik@fz-juelich.de

Die Jülich Aachen Research Alliance, kurz JARA, ist ein deutschlandweit einzigartiges Kooperationsmodell der RWTH Aachen und des Forschungszentrums Jülich. Sie überwindet das Nebeneinander von universitärer und außeruniversitärer Forschung und Lehre, um komplexen Fragestellungen mit vereinter Forschungskompetenz und -kapazität zu begegnen. Die RWTH Aachen und das Forschungszentrum Jülich verknüpfen in JARA gezielt Forschungsfelder, auf denen sich ihre jeweiligen spezifischen Stärken wirkungsvoll ergänzen, und schaffen unter dem Motto "Kompetenzen bündeln, gemeinsam Forschen, Zukunft gestalten" ein wissenschaftliches Umfeld der Spitzenklasse.

Angela Wenzik | Forschungszentrum Juelich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise