Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichte Entformung ohne Rückstände

04.09.2007
Flugzeugflügel und Armaturenbretter erhalten ihre Geometrie durch metallische Formen. Wie beim Kuchenbacken müssen diese vor jedem Pressen "eingefettet" werden, um die Kunststoffteile am Ende heraus zu bekommen. Eine permanente Beschichtung soll künftig helfen.

Ohne Fett in der Kuchenform geht das Backen meist schief: Der Kuchen lässt sich nicht an einem Stück aus der Form lösen. Ähnlich ist es bei der Fertigung von faserverstärkten Kunststoffteilen wie Flugzeugflügeln: Bevor die Techniker das Gemisch aus Harz, Kunststoff und Textilfasern in die metallische Form geben, müssen sie vier bis sechs Schichten Trennmittel aufbringen - meist von Hand.

Wie beim Kuchen muss die Form für jedes Kunststoffteil erneut gefettet werden. Dazu dienen trennende Stoffen in einem Lösungsmittel, welches nach dem Auftragen verdampft. So kommt eine beachtliche Menge an Lösungsmitteln zusammen: Allein die europäische Polyurethan-Industrie, die die Autoindustrie beliefert - mit Schläuchen, Sitzen oder Armaturenbrettern -, emittiert viele Tausend Tonnen Kohlenwasserstoffe pro Jahr.

Forscher am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen haben nun gemeinsam mit der Acmos Chemie KG eine neuartige Beschichtung für die Metallformen entwickelt. "Unsere plasmapolymere Schicht muss erst nach dreißig bis hundert Zyklen erneuert werden - in einigen Anwendungen hält sie auch bis zu tausend Zyklen durch", sagt Gregor Graßl, Projektleiter am IFAM. "Das beschleunigt die Fertigung und schont die Umwelt, da kein Lösungsmittel verdampft." Auch die Reinigung der Form nach jedem Bauteil geht schneller - es bleibt nicht mehr so viel daran haften. Ein weiterer Vorteil: Die fertigen Kunststoffteile müssen vor dem Lackieren nicht mehr abgeschliffen werden. Denn bisher klebte am Bauteil immer ein Teil des Trennmittels, auf dem nichts haften bleibt - also auch kein Lack oder Klebstoff. Damit entfällt neben dem Fetten der Form ein weiterer Arbeitsschritt.

Kleinere Formen, etwa für Flugzeugfenster-Verkleidungen, legen die Forscher zur Beschichtung ins Vakuum und zünden ein Plasma - ein ionisiertes Gas, wie es in Blitzen und Polarlichtern vorkommt. In das Plasma leiten sie ein Gas ein, dessen Moleküle gespalten werden und sich als Schicht auf der Metalloberfläche absetzen. "Große Bauteilformen wie 17 Meter lange Flügelschalen von Flugzeugen finden in Vakuumkammern keinen Platz. Daher fahren hier in einer weiteren IFAM-Neuentwicklung robotergesteuerte Düsen über die Form, aus denen das schichtbildende Gas strömt. Das Plasma wird in den Düsen gezündet", sagt Graßl. Das Vakuumverfahren ist bereits in der ersten Serienanwendung, die Düsenvariante ist noch in der Entwicklung. Auf der Kunststoffmesse K2007 vom 24. bis 31. Oktober in Düsseldorf ist die Schicht zu sehen (Stand E91, Halle 3).

Ansprechpartner:
Gregor Grassl
Telefon: 04 21 / 22 46-4 33
Fax: 04 21 / 22 46-4 30
gra@ifam.fraunhofer.de
Klaus Vissing
Telefon: 04 21 / 22 46-4 28
Fax: 04 21 / 22 46-4 30
vi@ifam.fraunhofer.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM
Bereich Klebtechnik und Oberflächen
Wiener Straße 12
28359 Bremen

Beate Koch | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ifam.fraunhofer.de

Weitere Berichte zu: Beschichtung Kunststoffteil Lösungsmittel Plasma Schicht

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik