Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haarige Kugeln kleben besser

11.09.2006
Mit einer neuen Messtechnik beobachten Max-Planck-Wissenschaftler, wie die Oberfläche von Kolloiden mitwirkt, wenn sich solche Partikel zu einem zähflüssigen Gel zusammenlagern

Zellkern, Mitochondrien und Ribosomen schwimmen im Zytoplasma und sinken nicht zum Boden der Zelle - sie verhalten sich wie suspendierte Kolloide. Sylvie Roke, eine Forscherin des Max-Planck-Instituts für Metallforschung in Stuttgart, hat nun gemeinsam mit niederländischen Wissenschaftlern die Eigenschaften von Kolloiden mit einer neuen optischen Messtechnik untersucht. Dabei haben sie herausgefunden, dass die Oberflächenstruktur der Partikel eine wichtige Rolle spielt, wenn sich eine Suspension aus Kolloiden in ein Gel verwandelt. Die Kolloide, welche die Wissenschaftler untersuchten, tragen auf ihrer Oberfläche lange Alkylketten und gleichen damit haarigen Kugeln: Lagern sich die Alkylketten und die Moleküle des Lösungsmittels abwechselnd aneinander, ballen sich die Partikel zu einem Gel zusammen. (PNAS, 5. September 2006)


Kolloide im Transmissionselektronenmikroskop: Das Bild zeigt Partikel mit einem Durchmesser von etwa 240 nm - das Lösungsmittel wurde verdampft, um die Aufnahme machen zu können. Bild: Sylvie Roke / Max-Planck-Institut für Metallforschung


Ob Gel oder Suspension - die Haare machen den Unterschied: Das linke Bild zeigt ein Gel bei Raumtemperatur (20 Grad Celsius). Die Partikel liegen dicht beieinander, die Alkylketten ihrer Oberflächen und die Moleküle des Lösungsmittels liegen geordnet aneinander. Bei 55 Grad Celsius liegen die Kolloide als Suspension vor, ihre Alkylketten stehen wirr ab. Bild: Sylvie Roke / Max-Planck-Institut für Metallforschung

Verglichen mit Atomen sind Kolloide riesig. Ihr durchschnittlicher Durchmesser ist mit 200 nm mehr als 1000-mal größer - eben das macht sie für die Forschung so interessant. Denn Kolloide verhalten sich oft wie Atome. Doch im Gegensatz zu Atomen, den kleinsten Bausteinen der Natur, lassen sich Kolloide auch mikroskopisch beobachten - und die daraus gewonnenen Ergebnisse anschließend auf Atome übertragen. Indem sie Kolloide untersuchen, lernen Wissenschaftler aber auch viel über das Verhalten von Biomolekülen im Inneren von Zellen. Denn in Organismen verlaufen viele chemische Reaktionen in kolloidalen Systemen. In der Medizin forschen die Wissenschaftler deshalb nach Möglichkeiten, Kolloide als Trägermaterial mit anderen Molekülen - etwa Antikrebsmittel - zu bestücken.

In kolloidalen Systemen schweben Partikel in einer Flüssigkeit, ohne das sie sich darin tatsächlich lösen. Die Eigenschaften dieser Systeme sind allerdings bis heute noch nicht vollständig bekannt. Unklar sind etwa die Mechanismen, bei denen Kolloide ihren Zustand ändern: von geordneten kristallinen Strukturen, über dickflüssige Gele bis hin zu gasähnlichen Suspensionen - einem Stoffgemisch, das aufgeschlämmtem Sand im Meer ähnelt.

Die Stuttgarter Max-Planck-Forscherin Sylvie Roke hat nun gemeinsam mit Wissenschaftlern des FOM Institute for Atomic and Molecular Physics in Amsterdam Kolloide untersucht, deren Oberflächen lange Alkylketten wie einen Pelz tragen. Sie beobachteten diese Kolloide mit einer neu entwickelten optischen Messtechnik, während eine Suspension der Partikel einen Phasenübergang durchmachte. Sie kühlten die Suspension ab, in der die Teilchen voneinander getrennt umher schwammen. Daraufhin lagerten sich diese zu einem zähflüssigen Gel zusammen. Das lag zum Teil daran, dass sich die Partikel in der Suspension langsamer bewegten - wie Wasser, das allmählich zu Eis erstarrt. Gleichzeitig richteten sich die Alkylketten beim Abkühlen gerade auf - als stünden den Kolloiden die Haare zu Berge. Zwischen ihnen ordneten sich zudem Moleküle des Lösungsmittels an. Damit erhöhte sich die Dichte des Alkylpelzes. In der Folge verstärkte sich die van-der-Waals Kraft zwischen den Teilchen - einer im Vergleich zur Atombindung recht schwachen anziehenden Kraft zwischen Molekülen, aber auch größeren Partikeln. Die Kraft ist aber immerhin so stark, dass die Partikel aneinander kleben bleiben, wenn sie zufällig zusammenstoßen. Dieser Prozess zog sich über mehrere Tage - und damit länger als bislang vermutet.

Forscher hatten bereits seit längerem einen Zusammenhang zwischen der Struktur der Oberfläche, in diesem Fall dem Verhalten der Alkylketten, und solchen Phasenübergängen in kolloidalen Systemen vermutet. Doch es gab bislang keine direkte Methode, diesen Zusammenhang zu untersuchen. Die Max-Planck-Wissenschaftler entwickelten deshalb die neue Technologie "Vibrational sum frequency scattering" (Schwingungs-summenfrequenzerzeugung), welche die Molekülschwingungen auf den Oberflächen der Kolloide misst. "Mit unserer Beobachtungsmethode können wir nun Moleküle an den verborgenen Partikeloberflächen beobachten, indem wir ihre Struktur und Orientierung bestimmen und gleichzeitig Partikelgröße- und form untersuchen", sagt Dr. Sylvie Roke, die diese Technik während ihrer Promotion entwickelt hat.

Originalveröffentlichung:

Sylvie Roke, Otto Berg, Johan Buitenhuis, Alfons van Blaaderen und Mischa Bonn
Surface molecular view of colloidal gelation
PNAS, 5. September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Alkylketten Atom Gel Kolloide Kolloiden Molekül Partikel Suspension

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen