Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haarige Kugeln kleben besser

11.09.2006
Mit einer neuen Messtechnik beobachten Max-Planck-Wissenschaftler, wie die Oberfläche von Kolloiden mitwirkt, wenn sich solche Partikel zu einem zähflüssigen Gel zusammenlagern

Zellkern, Mitochondrien und Ribosomen schwimmen im Zytoplasma und sinken nicht zum Boden der Zelle - sie verhalten sich wie suspendierte Kolloide. Sylvie Roke, eine Forscherin des Max-Planck-Instituts für Metallforschung in Stuttgart, hat nun gemeinsam mit niederländischen Wissenschaftlern die Eigenschaften von Kolloiden mit einer neuen optischen Messtechnik untersucht. Dabei haben sie herausgefunden, dass die Oberflächenstruktur der Partikel eine wichtige Rolle spielt, wenn sich eine Suspension aus Kolloiden in ein Gel verwandelt. Die Kolloide, welche die Wissenschaftler untersuchten, tragen auf ihrer Oberfläche lange Alkylketten und gleichen damit haarigen Kugeln: Lagern sich die Alkylketten und die Moleküle des Lösungsmittels abwechselnd aneinander, ballen sich die Partikel zu einem Gel zusammen. (PNAS, 5. September 2006)


Kolloide im Transmissionselektronenmikroskop: Das Bild zeigt Partikel mit einem Durchmesser von etwa 240 nm - das Lösungsmittel wurde verdampft, um die Aufnahme machen zu können. Bild: Sylvie Roke / Max-Planck-Institut für Metallforschung


Ob Gel oder Suspension - die Haare machen den Unterschied: Das linke Bild zeigt ein Gel bei Raumtemperatur (20 Grad Celsius). Die Partikel liegen dicht beieinander, die Alkylketten ihrer Oberflächen und die Moleküle des Lösungsmittels liegen geordnet aneinander. Bei 55 Grad Celsius liegen die Kolloide als Suspension vor, ihre Alkylketten stehen wirr ab. Bild: Sylvie Roke / Max-Planck-Institut für Metallforschung

Verglichen mit Atomen sind Kolloide riesig. Ihr durchschnittlicher Durchmesser ist mit 200 nm mehr als 1000-mal größer - eben das macht sie für die Forschung so interessant. Denn Kolloide verhalten sich oft wie Atome. Doch im Gegensatz zu Atomen, den kleinsten Bausteinen der Natur, lassen sich Kolloide auch mikroskopisch beobachten - und die daraus gewonnenen Ergebnisse anschließend auf Atome übertragen. Indem sie Kolloide untersuchen, lernen Wissenschaftler aber auch viel über das Verhalten von Biomolekülen im Inneren von Zellen. Denn in Organismen verlaufen viele chemische Reaktionen in kolloidalen Systemen. In der Medizin forschen die Wissenschaftler deshalb nach Möglichkeiten, Kolloide als Trägermaterial mit anderen Molekülen - etwa Antikrebsmittel - zu bestücken.

In kolloidalen Systemen schweben Partikel in einer Flüssigkeit, ohne das sie sich darin tatsächlich lösen. Die Eigenschaften dieser Systeme sind allerdings bis heute noch nicht vollständig bekannt. Unklar sind etwa die Mechanismen, bei denen Kolloide ihren Zustand ändern: von geordneten kristallinen Strukturen, über dickflüssige Gele bis hin zu gasähnlichen Suspensionen - einem Stoffgemisch, das aufgeschlämmtem Sand im Meer ähnelt.

Die Stuttgarter Max-Planck-Forscherin Sylvie Roke hat nun gemeinsam mit Wissenschaftlern des FOM Institute for Atomic and Molecular Physics in Amsterdam Kolloide untersucht, deren Oberflächen lange Alkylketten wie einen Pelz tragen. Sie beobachteten diese Kolloide mit einer neu entwickelten optischen Messtechnik, während eine Suspension der Partikel einen Phasenübergang durchmachte. Sie kühlten die Suspension ab, in der die Teilchen voneinander getrennt umher schwammen. Daraufhin lagerten sich diese zu einem zähflüssigen Gel zusammen. Das lag zum Teil daran, dass sich die Partikel in der Suspension langsamer bewegten - wie Wasser, das allmählich zu Eis erstarrt. Gleichzeitig richteten sich die Alkylketten beim Abkühlen gerade auf - als stünden den Kolloiden die Haare zu Berge. Zwischen ihnen ordneten sich zudem Moleküle des Lösungsmittels an. Damit erhöhte sich die Dichte des Alkylpelzes. In der Folge verstärkte sich die van-der-Waals Kraft zwischen den Teilchen - einer im Vergleich zur Atombindung recht schwachen anziehenden Kraft zwischen Molekülen, aber auch größeren Partikeln. Die Kraft ist aber immerhin so stark, dass die Partikel aneinander kleben bleiben, wenn sie zufällig zusammenstoßen. Dieser Prozess zog sich über mehrere Tage - und damit länger als bislang vermutet.

Forscher hatten bereits seit längerem einen Zusammenhang zwischen der Struktur der Oberfläche, in diesem Fall dem Verhalten der Alkylketten, und solchen Phasenübergängen in kolloidalen Systemen vermutet. Doch es gab bislang keine direkte Methode, diesen Zusammenhang zu untersuchen. Die Max-Planck-Wissenschaftler entwickelten deshalb die neue Technologie "Vibrational sum frequency scattering" (Schwingungs-summenfrequenzerzeugung), welche die Molekülschwingungen auf den Oberflächen der Kolloide misst. "Mit unserer Beobachtungsmethode können wir nun Moleküle an den verborgenen Partikeloberflächen beobachten, indem wir ihre Struktur und Orientierung bestimmen und gleichzeitig Partikelgröße- und form untersuchen", sagt Dr. Sylvie Roke, die diese Technik während ihrer Promotion entwickelt hat.

Originalveröffentlichung:

Sylvie Roke, Otto Berg, Johan Buitenhuis, Alfons van Blaaderen und Mischa Bonn
Surface molecular view of colloidal gelation
PNAS, 5. September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Alkylketten Atom Gel Kolloide Kolloiden Molekül Partikel Suspension

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie