Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialwissenschaft mit 70 Tesla

10.08.2006
Das erste wissenschaftliche Experiment mit 70 Tesla im Hochfeld-Magnetlabor Dresden des Forschungszentrums Rossendorf beweist nachdrücklich, dass die Materialeigenschaften eines Metalls durch das Anlegen eines hohen Magnetfeldes verändert werden können. Dies gilt für die Verbindung CeBiPt, einem so genannten Halbmetall aus Cer, Wismut und Platin. Eine wissenschaftliche Veröffentlichung zu Untersuchungen mit 50 Tesla, die in Kooperation mit dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden und weiteren Gruppen durchgeführt wurden, wird in einer der nächsten Ausgaben des New Journal of Physics zu finden sein.
Der Dresdner Materialforschung stehen erst seit wenigen Tagen Magnetfelder in einer Stärke von 70 Tesla zur Verfügung. Weltweit gibt es überhaupt nur wenige Labors, in denen wiederholbare Experimente mit Magnetpulsen in dieser Stärke gemacht werden können. Tesla ist die physikalische Einheit für die Magnetfeldstärke. Ein starker Kühlschrankmagnet hat etwa 0,3 Tesla und 70 Tesla entsprechen dem Zwei- bis Dreimillionenfachen des Magnetfeldes der Erde.

Die Messung des exotischen Halbmetalls CeBiPt fand am 4. August 2006 im Forschungszentrum Rossendorf (FZR) statt. Sie untermauert das Ergebnis, das mit 50 Tesla erreicht wurde und das die Fachwelt in Erstaunen versetzt hatte. Die elektronischen Eigenschaften des Metalls änderten sich in dem hohen Magnetfeld. Bislang galten Metalle doch als robust und stabil gegenüber äußeren Einflüssen wie Temperatur und Magnetfeld.

Die Eigenschaft eines Metalls wird u. a. durch frei bewegliche Ladungsträger, also Elektronen, bestimmt. Diese Elektronen liegen in einer für jedes Metall bestimmten Dichte vor. Die Ladungsträgerdichte ändert sich üblicherweise bei hohen Magnetfeldern nicht. Prof. Joachim Wosnitza von Hochfeld-Magnetlabor Dresden des FZR untersuchte gemeinsam mit experimentell und theoretisch arbeitenden Gruppen des IFW, des Max-Planck-Instituts für Chemische Physik fester Stoffe sowie der Universitäten Karlsruhe, Braunschweig und Hiroshima, Japan, die Halbmetalle CeBiPt und LaBiPt. Die Physiker stellten erstmalig fest, dass sich bei 50 Tesla die elektronischen Eigenschaften ändern. Diesen Befund belegen die aktuellen drastischen Änderungen, die in der Messung bei 70 Tesla beobachtet wurden.

Der Titel der Publikation im New Journal of Physics (http://www.njp.org/) lautet: "Magneticfield- and temperature-dependent Fermi surface of CeBiPt". Autoren: J. Wosnitza, G. Goll, A. D. Bianchi, B. Bergk, N. Kozlova, I. Opahle, S. Elgazzar, Manuel Richter, O. Stockert, H. v. Löhneysen, T. Yoshino und T. Takabatake.

Das Hochfeld-Magnetlabor Dresden strebt den Europarekord mit den stärksten gespulsten Magnetfeldern für die Forschung noch in diesem Jahr an. Ab 2007 soll das Labor zu einer attraktiven Serviceeinrichtung für Materialforscher aus ganz Europa avancieren.

Weitere Informationen:
Prof. Dr. Joachim Wosnitza
Institutsdirektor Hochfeld-Magnetlabor Dresden
Forschungszentrum Rossendorf
Tel.: 0351 260 - 3524
j.wosnitza@fz-rossendorf.de

Pressekontakt:
Dr. Christine Bohnet - Presse- und Öffentlichkeitsarbeit
Forschungszentrum Rossendorf
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fz-rossendorf.de
Postanschrift: Postfach 51 01 19 ? 01314 Dresden
Besucheranschrift: Bautzner Landstraße 128 ? 01328 Dresden

Information:

Das FZR erbringt wesentliche Beiträge auf den Gebieten der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zur

o Aufklärung von Strukturen im nanoskaligen und subatomaren Bereich und der darauf beruhenden Eigenschaften der Materie,

o frühzeitigen Erkennung und wirksamen Behandlung von Tumor- und Stoffwechselerkrankungen als den dominierenden Gesundheitsproblemen in der modernen Industriegesellschaft sowie

o Verbesserung des Schutzes von Mensch und Umwelt vor technischen Risiken.

Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten. Das Hochfeld-Magnetlabor ist eines dieser Großgeräte.

Das FZR ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute haben ein Budget von über 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter (Stand 1.1.2006).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Berichte zu: FZR Hochfeld-Magnetlabor Magnetfeld Metall Tesla

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik