Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Material für die Festplatten von morgen

19.12.2005


Heisenberg-Stipendiat Dr. Manfred Fiebig bei Justierungsarbeiten am Kurzpulslaser des Max-Born-Instituts in Adlershof. Mit den ultrakurzen Lichtpulsen untersucht Fiebig magnetische Materialien. Foto: Zens


Manfred Fiebigs Erkenntnisse machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Die Deutsche Physikalische Gesellschaft (DPG) hat dem 39-Jährigen Forscher aus dem Max-Born-Institut den Walter-Schottky-Preis für seine bahnbrechenden Arbeiten zu magnetoelektrischen Effekten in Multiferroika zuerkannt.


Dr. Manfred Fiebig (39) vom Max-Born-Institut wird mit dem Walter-Schottky-Preis 2006 der Deutschen Physikalischen Gesellschaft (DPG) ausgezeichnet. Der Nachwuchspreis würdigt herausragende Beiträge zur Physik der kondensierten Materie. Durch seine "bahnbrechenden Arbeiten" zu magnetoelektrischen Effekten in Multiferroika habe Fiebig "die Relevanz dieser Materialien für Grundlagenforschung und Anwendungen aufgezeigt, indem er eine Methode zu ihrer spektroskopischen Charakterisierung entwickelte", so die DPG. Die Erkenntnisse des Physikers und seiner beteiligten Kollegen machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Der Preis ist mit 15.000 Euro dotiert und wird im März 2006 verliehen.

Fiebig und seinen Kollegen gelang erstmals der experimentelle Beweis dafür, dass elektrische und magnetische Eigenschaften von Multiferroika räumlich zusammenhängen. Eine Korrelation dieser Eigenschaften hatten Physiker lange vermutet. Fiebigs Team machte die Kopplung mit Laserlicht sichtbar. Für ihre Messungen verwendeten die Wissenschaftler infrarotes Laserlicht. Sie bestrahlten damit Yttriummanganit-Kristalle. Bei einem sehr geringen Teil des eingestrahlten Lichtes halbiert sich durch Kontakt mit den magnetisch oder elektrisch ausgerichteten Bereichen die Wellenlänge. Das austretende Licht ist grün. "Das kann man sich vorstellen wie in einem Westernfilm", erklärt Fiebig. Ein Scharfschütze schießt auf eine Blechbüchse, die fliegt in die Luft - und er trifft sie ein zweites Mal, so dass sie noch höher fliegt. Fiebig: "Wir schießen mit einem Laser auf unsere Probe und erhöhen das Energieniveau doppelt, dann messen wir das Licht, das die Probe abstrahlt, wenn die Atome in ihr ursprüngliches Niveau zurückfallen."


Eine extrem empfindliche Kamera nimmt dieses Licht auf. Aus der Analyse der unterschiedlichen Schwingungsrichtungen erhalten die Forscher Aufschluss über die magnetische und die elektrische Ausrichtung der verschiedenen Gebiete ("Domänen") im Kristall. Die Arbeiten wurden an der Universität Dortmund bei Prof. Dietmar Fröhlich in Kooperation mit Prof. Roman Pisarev (St. Petersburg) begonnen, dann aber im wesentlichen am Max-Born-Institut im Bereich von Prof. Thomas Elsässer zusammen mit Dr. Thomas Lottermoser durchgeführt.

In Adlershof hat der Heisenberg-Stipendiat Fiebig wesentlich leistungsfähigere Laser als anderswo zur Verfügung. Er und seine Kollegen erforschen damit die Grundlagen für Datenspeicher von morgen. Derzeit arbeiten die Computer mit ferromagnetischen Speicherelementen. Die Informationen sind über Magnetisierungen kodiert, die je nach Ausrichtung für Null oder Eins stehen. Ein Schreib- und Lesekopf kann die magnetischen Strukturen erzeugen und lesen. Dazu ist ein äußeres Magnetfeld notwendig. Manfred Fiebig wies nun nach, dass sich die magnetischen Strukturen auch mit elektrischen Feldern gezielt erzeugen und umorientieren lassen - und zwar bei ganz bestimmten Materialien, den "Multiferroika". Dabei handelt es sich Materialien, die mehrere Ordnungseigenschaften in sich vereinen, etwa den Ferromagnetismus mit der Ferroelektrizität. "Wenn es gelingt, Multiferroika praxistauglich zu machen, dann könnten wir auf wesentlich kleinerem Raum und viel schneller als bisher Daten speichern und wieder auslesen", sagt Fiebig. Noch ist das Zukunftsmusik, weil seine Versuche bei mehr als 260 Grad unter Null in einer Helium-Atmosphäre ablaufen. Multiferroika, die bei Raumtemperatur beschrieben und wieder ausgelesen werden können, sind allerdings in der Entwicklung.

Fiebig ist unterdessen dabei, seine Forschung zu erweitern. Er untersucht jetzt die Geschwindigkeit, mit der sich magnetische Domänen durch Anlegen eines elektromagnetischen Feldes ändern. "Das ist das Einzigartige am MBI", schwärmt Fiebig: "Ich habe meine Probe genommen, bin eine Etage tiefer gegangen und konnte dort im Labor zeitaufgelöste Aufnahmen machen." Die Ergebnisse weisen darauf hin, dass die Änderungen im Bereich von Pikosekunden ("zehn hoch minus zwölf" Sekunden) ablaufen. Ein grundlegendes Verständnis der Prozesse könne dazu führen, dass die Schaltzeiten in Rechnern kürzer und Schaltprozesse flexibler werden.

Weitere Informationen:
Manfred Fiebig
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born-Straße 2A
12489 Berlin
Tel: 030-6392-1404
Mail: fiebig@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: DPG Festplatte Max-Born-Institut Multiferroika

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kleine Strukturen – große Wirkung
21.11.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Transparente Beschichtung für Alltagsanwendungen
20.11.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie