Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Material für die Festplatten von morgen

19.12.2005


Heisenberg-Stipendiat Dr. Manfred Fiebig bei Justierungsarbeiten am Kurzpulslaser des Max-Born-Instituts in Adlershof. Mit den ultrakurzen Lichtpulsen untersucht Fiebig magnetische Materialien. Foto: Zens


Manfred Fiebigs Erkenntnisse machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Die Deutsche Physikalische Gesellschaft (DPG) hat dem 39-Jährigen Forscher aus dem Max-Born-Institut den Walter-Schottky-Preis für seine bahnbrechenden Arbeiten zu magnetoelektrischen Effekten in Multiferroika zuerkannt.


Dr. Manfred Fiebig (39) vom Max-Born-Institut wird mit dem Walter-Schottky-Preis 2006 der Deutschen Physikalischen Gesellschaft (DPG) ausgezeichnet. Der Nachwuchspreis würdigt herausragende Beiträge zur Physik der kondensierten Materie. Durch seine "bahnbrechenden Arbeiten" zu magnetoelektrischen Effekten in Multiferroika habe Fiebig "die Relevanz dieser Materialien für Grundlagenforschung und Anwendungen aufgezeigt, indem er eine Methode zu ihrer spektroskopischen Charakterisierung entwickelte", so die DPG. Die Erkenntnisse des Physikers und seiner beteiligten Kollegen machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Der Preis ist mit 15.000 Euro dotiert und wird im März 2006 verliehen.

Fiebig und seinen Kollegen gelang erstmals der experimentelle Beweis dafür, dass elektrische und magnetische Eigenschaften von Multiferroika räumlich zusammenhängen. Eine Korrelation dieser Eigenschaften hatten Physiker lange vermutet. Fiebigs Team machte die Kopplung mit Laserlicht sichtbar. Für ihre Messungen verwendeten die Wissenschaftler infrarotes Laserlicht. Sie bestrahlten damit Yttriummanganit-Kristalle. Bei einem sehr geringen Teil des eingestrahlten Lichtes halbiert sich durch Kontakt mit den magnetisch oder elektrisch ausgerichteten Bereichen die Wellenlänge. Das austretende Licht ist grün. "Das kann man sich vorstellen wie in einem Westernfilm", erklärt Fiebig. Ein Scharfschütze schießt auf eine Blechbüchse, die fliegt in die Luft - und er trifft sie ein zweites Mal, so dass sie noch höher fliegt. Fiebig: "Wir schießen mit einem Laser auf unsere Probe und erhöhen das Energieniveau doppelt, dann messen wir das Licht, das die Probe abstrahlt, wenn die Atome in ihr ursprüngliches Niveau zurückfallen."


Eine extrem empfindliche Kamera nimmt dieses Licht auf. Aus der Analyse der unterschiedlichen Schwingungsrichtungen erhalten die Forscher Aufschluss über die magnetische und die elektrische Ausrichtung der verschiedenen Gebiete ("Domänen") im Kristall. Die Arbeiten wurden an der Universität Dortmund bei Prof. Dietmar Fröhlich in Kooperation mit Prof. Roman Pisarev (St. Petersburg) begonnen, dann aber im wesentlichen am Max-Born-Institut im Bereich von Prof. Thomas Elsässer zusammen mit Dr. Thomas Lottermoser durchgeführt.

In Adlershof hat der Heisenberg-Stipendiat Fiebig wesentlich leistungsfähigere Laser als anderswo zur Verfügung. Er und seine Kollegen erforschen damit die Grundlagen für Datenspeicher von morgen. Derzeit arbeiten die Computer mit ferromagnetischen Speicherelementen. Die Informationen sind über Magnetisierungen kodiert, die je nach Ausrichtung für Null oder Eins stehen. Ein Schreib- und Lesekopf kann die magnetischen Strukturen erzeugen und lesen. Dazu ist ein äußeres Magnetfeld notwendig. Manfred Fiebig wies nun nach, dass sich die magnetischen Strukturen auch mit elektrischen Feldern gezielt erzeugen und umorientieren lassen - und zwar bei ganz bestimmten Materialien, den "Multiferroika". Dabei handelt es sich Materialien, die mehrere Ordnungseigenschaften in sich vereinen, etwa den Ferromagnetismus mit der Ferroelektrizität. "Wenn es gelingt, Multiferroika praxistauglich zu machen, dann könnten wir auf wesentlich kleinerem Raum und viel schneller als bisher Daten speichern und wieder auslesen", sagt Fiebig. Noch ist das Zukunftsmusik, weil seine Versuche bei mehr als 260 Grad unter Null in einer Helium-Atmosphäre ablaufen. Multiferroika, die bei Raumtemperatur beschrieben und wieder ausgelesen werden können, sind allerdings in der Entwicklung.

Fiebig ist unterdessen dabei, seine Forschung zu erweitern. Er untersucht jetzt die Geschwindigkeit, mit der sich magnetische Domänen durch Anlegen eines elektromagnetischen Feldes ändern. "Das ist das Einzigartige am MBI", schwärmt Fiebig: "Ich habe meine Probe genommen, bin eine Etage tiefer gegangen und konnte dort im Labor zeitaufgelöste Aufnahmen machen." Die Ergebnisse weisen darauf hin, dass die Änderungen im Bereich von Pikosekunden ("zehn hoch minus zwölf" Sekunden) ablaufen. Ein grundlegendes Verständnis der Prozesse könne dazu führen, dass die Schaltzeiten in Rechnern kürzer und Schaltprozesse flexibler werden.

Weitere Informationen:
Manfred Fiebig
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born-Straße 2A
12489 Berlin
Tel: 030-6392-1404
Mail: fiebig@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: DPG Festplatte Max-Born-Institut Multiferroika

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen