Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Material für die Festplatten von morgen

19.12.2005


Heisenberg-Stipendiat Dr. Manfred Fiebig bei Justierungsarbeiten am Kurzpulslaser des Max-Born-Instituts in Adlershof. Mit den ultrakurzen Lichtpulsen untersucht Fiebig magnetische Materialien. Foto: Zens


Manfred Fiebigs Erkenntnisse machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Die Deutsche Physikalische Gesellschaft (DPG) hat dem 39-Jährigen Forscher aus dem Max-Born-Institut den Walter-Schottky-Preis für seine bahnbrechenden Arbeiten zu magnetoelektrischen Effekten in Multiferroika zuerkannt.


Dr. Manfred Fiebig (39) vom Max-Born-Institut wird mit dem Walter-Schottky-Preis 2006 der Deutschen Physikalischen Gesellschaft (DPG) ausgezeichnet. Der Nachwuchspreis würdigt herausragende Beiträge zur Physik der kondensierten Materie. Durch seine "bahnbrechenden Arbeiten" zu magnetoelektrischen Effekten in Multiferroika habe Fiebig "die Relevanz dieser Materialien für Grundlagenforschung und Anwendungen aufgezeigt, indem er eine Methode zu ihrer spektroskopischen Charakterisierung entwickelte", so die DPG. Die Erkenntnisse des Physikers und seiner beteiligten Kollegen machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Der Preis ist mit 15.000 Euro dotiert und wird im März 2006 verliehen.

Fiebig und seinen Kollegen gelang erstmals der experimentelle Beweis dafür, dass elektrische und magnetische Eigenschaften von Multiferroika räumlich zusammenhängen. Eine Korrelation dieser Eigenschaften hatten Physiker lange vermutet. Fiebigs Team machte die Kopplung mit Laserlicht sichtbar. Für ihre Messungen verwendeten die Wissenschaftler infrarotes Laserlicht. Sie bestrahlten damit Yttriummanganit-Kristalle. Bei einem sehr geringen Teil des eingestrahlten Lichtes halbiert sich durch Kontakt mit den magnetisch oder elektrisch ausgerichteten Bereichen die Wellenlänge. Das austretende Licht ist grün. "Das kann man sich vorstellen wie in einem Westernfilm", erklärt Fiebig. Ein Scharfschütze schießt auf eine Blechbüchse, die fliegt in die Luft - und er trifft sie ein zweites Mal, so dass sie noch höher fliegt. Fiebig: "Wir schießen mit einem Laser auf unsere Probe und erhöhen das Energieniveau doppelt, dann messen wir das Licht, das die Probe abstrahlt, wenn die Atome in ihr ursprüngliches Niveau zurückfallen."


Eine extrem empfindliche Kamera nimmt dieses Licht auf. Aus der Analyse der unterschiedlichen Schwingungsrichtungen erhalten die Forscher Aufschluss über die magnetische und die elektrische Ausrichtung der verschiedenen Gebiete ("Domänen") im Kristall. Die Arbeiten wurden an der Universität Dortmund bei Prof. Dietmar Fröhlich in Kooperation mit Prof. Roman Pisarev (St. Petersburg) begonnen, dann aber im wesentlichen am Max-Born-Institut im Bereich von Prof. Thomas Elsässer zusammen mit Dr. Thomas Lottermoser durchgeführt.

In Adlershof hat der Heisenberg-Stipendiat Fiebig wesentlich leistungsfähigere Laser als anderswo zur Verfügung. Er und seine Kollegen erforschen damit die Grundlagen für Datenspeicher von morgen. Derzeit arbeiten die Computer mit ferromagnetischen Speicherelementen. Die Informationen sind über Magnetisierungen kodiert, die je nach Ausrichtung für Null oder Eins stehen. Ein Schreib- und Lesekopf kann die magnetischen Strukturen erzeugen und lesen. Dazu ist ein äußeres Magnetfeld notwendig. Manfred Fiebig wies nun nach, dass sich die magnetischen Strukturen auch mit elektrischen Feldern gezielt erzeugen und umorientieren lassen - und zwar bei ganz bestimmten Materialien, den "Multiferroika". Dabei handelt es sich Materialien, die mehrere Ordnungseigenschaften in sich vereinen, etwa den Ferromagnetismus mit der Ferroelektrizität. "Wenn es gelingt, Multiferroika praxistauglich zu machen, dann könnten wir auf wesentlich kleinerem Raum und viel schneller als bisher Daten speichern und wieder auslesen", sagt Fiebig. Noch ist das Zukunftsmusik, weil seine Versuche bei mehr als 260 Grad unter Null in einer Helium-Atmosphäre ablaufen. Multiferroika, die bei Raumtemperatur beschrieben und wieder ausgelesen werden können, sind allerdings in der Entwicklung.

Fiebig ist unterdessen dabei, seine Forschung zu erweitern. Er untersucht jetzt die Geschwindigkeit, mit der sich magnetische Domänen durch Anlegen eines elektromagnetischen Feldes ändern. "Das ist das Einzigartige am MBI", schwärmt Fiebig: "Ich habe meine Probe genommen, bin eine Etage tiefer gegangen und konnte dort im Labor zeitaufgelöste Aufnahmen machen." Die Ergebnisse weisen darauf hin, dass die Änderungen im Bereich von Pikosekunden ("zehn hoch minus zwölf" Sekunden) ablaufen. Ein grundlegendes Verständnis der Prozesse könne dazu führen, dass die Schaltzeiten in Rechnern kürzer und Schaltprozesse flexibler werden.

Weitere Informationen:
Manfred Fiebig
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born-Straße 2A
12489 Berlin
Tel: 030-6392-1404
Mail: fiebig@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: DPG Festplatte Max-Born-Institut Multiferroika

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise