Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Stahl auf seinen kristallinen Grund gehen

04.11.2005


Neuartige, sehr viel präzisere Simulationsmodelle für Metalle und metallische Bauteile will eine neu gegründete Arbeitsgruppe entwickeln: Das Max-Planck-Institut für Eisenforschung MPIE in Düsseldorf und das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg erhielten jetzt den Segen ihrer Vorstände. Sie werden in den kommenden drei Jahren mathematische Beschreibungen von Metallen aus der Grundlagenforschung mit der anwendungsorientierten Simulation von Fertigungsprozessen und Bauteilen für die industrielle Praxis zusammenzuführen. Die Max-Planck-Gesellschaft investiert knapp eine halbe Million Euro, die Fraunhofer-Gesellschaft knapp eine Million Euro in die Entwicklung neuer so genannter Vielkristall-Simulationsmodelle.



Das Simulieren, also das Vorausberechnen des Bauteilverhaltens ist in der Produktentwicklung heute gang und gäbe. Simulationen zeigen, ob ein Bauteil den Belastungen standhält oder wo die Fertigung optimiert werden muss, um spätere Schäden zu vermeiden. Aber gerade Metalle sind nicht immer gleich. "Ein einziges Blech kann völlig unterschiedliche Werkstoffeigenschaften haben, je nachdem, wo und wie es verformt wurde", erläutert Professor Peter Gumbsch, Leiter des Fraunhofer-Instituts in Freiburg. Das aber berücksichtigen Simulationsmodelle heute noch nicht richtig: "Die Genauigkeit ist oft unzureichend, aber die empirischen Methoden sind ausgereizt", beschreibt Gumbsch die Lage der Modellentwickler.



Dabei gibt es den Blick in die Tiefe des kristallinen Verhaltens schon: Professor Dierk Raabe, Direktor am Max-Planck-Instituts für Eisenforschung MPIE in Düsseldorf, und seine Kollegen untersuchen das Verhalten vieler einzelner Kristallite im Metall. Sie beschreiben zum Beispiel verformungsinduzierte Umwandlungen und Zwillingseffekte. "Aber ein Bauteil besteht aus mehreren Milliarden Einzelkristallen, die unmöglich alle einzeln verfolgt werden können. Eine gewisse Ordnung kommt nun dadurch hinein, dass diese Kristalle sich, je nach Belastung, etwa wenn ein Blech verformt oder ein Draht gezogen wird, unterschiedlich umordnen. Hier gilt es intelligente Verfahren zu entwickeln, die in der Lage sind diese Umorientierung zu verfolgen" beschreibt Dierk Raabe den schier unfassbaren Umfang der rechnerischen Aufgabe für die industrielle Anwendung.

Kein Wunder also, dass die rechnerische Voraussage darüber, wie lange ein Vergaser dem Belastungswechsel standhält, wie Schäden an Wolframdrähten in Glühbirnen entstehen und vermieden werden, und wie ein Karosserieteil nach einem Zusammenstoß aussieht, vom Fraunhofer IWM bislang ohne Einbeziehung der detaillierten Kristallinformationen gelöst wurde. Die gemeinsame Arbeitsgruppe soll dazu dienen, die Theorie der Vielkristallmechanik zu vertiefen und andererseits den Transfer der Erkenntnis aus der Grundlagenforschung in die industrielle Anwendung zu gewährleisten. "Unsere Hauptaufgabe wird das Abspecken der kristallmechanischen Modelle an der richtigen Stelle und das Zusammenführen von numerischen Modellen auf unterschiedlichen Größenskalen sein. Der Gewinn für unsere Industriepartner muss darin liegen, dass mit vertretbarem Mehraufwand zusätzliche Informationen über das Werkstoffverhalten zugänglich werden", beschreibt IWM-Institutsleiter Gumbsch, was sich das Fraunhofer IWM in den kommenden drei Jahren vorgenommen hat.

Ziel ist die Entwicklung von Multiskalen-Modellen. Sie verbinden die mathematischen Beschreibungen des Werkstoffverhaltens auf völlig unterschiedlichen Ebenen. Während übliche Finite-Elemente-Modelle das Bauteil in millimetergroße Stücke zerteilen und deren Verhalten berechnen, gilt es nun, Texturmodelle für Korngrößen im Mikrometermaßstab und Modelle auf der Ebene einzelner Kristalle jeweils ineinander zu verschränken, ohne den Bedarf an Rechnerleistung zu hoch schrauben zu müssen.

Der Bedarf an solchen Multiskalen-Simulationsmodellen ist groß: Das Bauteilverhalten kristalliner Werkstoffe aus Metall ist heute in der Mikrosystemtechnik genauso wichtig wie im Automobilsektor, in der Medizintechnik oder der Elektrotechnik.

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Berichte zu: Bauteil Grundlagenforschung Metall

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?

28.07.2017 | Studien Analysen

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie