Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Stahl auf seinen kristallinen Grund gehen

04.11.2005


Neuartige, sehr viel präzisere Simulationsmodelle für Metalle und metallische Bauteile will eine neu gegründete Arbeitsgruppe entwickeln: Das Max-Planck-Institut für Eisenforschung MPIE in Düsseldorf und das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg erhielten jetzt den Segen ihrer Vorstände. Sie werden in den kommenden drei Jahren mathematische Beschreibungen von Metallen aus der Grundlagenforschung mit der anwendungsorientierten Simulation von Fertigungsprozessen und Bauteilen für die industrielle Praxis zusammenzuführen. Die Max-Planck-Gesellschaft investiert knapp eine halbe Million Euro, die Fraunhofer-Gesellschaft knapp eine Million Euro in die Entwicklung neuer so genannter Vielkristall-Simulationsmodelle.



Das Simulieren, also das Vorausberechnen des Bauteilverhaltens ist in der Produktentwicklung heute gang und gäbe. Simulationen zeigen, ob ein Bauteil den Belastungen standhält oder wo die Fertigung optimiert werden muss, um spätere Schäden zu vermeiden. Aber gerade Metalle sind nicht immer gleich. "Ein einziges Blech kann völlig unterschiedliche Werkstoffeigenschaften haben, je nachdem, wo und wie es verformt wurde", erläutert Professor Peter Gumbsch, Leiter des Fraunhofer-Instituts in Freiburg. Das aber berücksichtigen Simulationsmodelle heute noch nicht richtig: "Die Genauigkeit ist oft unzureichend, aber die empirischen Methoden sind ausgereizt", beschreibt Gumbsch die Lage der Modellentwickler.



Dabei gibt es den Blick in die Tiefe des kristallinen Verhaltens schon: Professor Dierk Raabe, Direktor am Max-Planck-Instituts für Eisenforschung MPIE in Düsseldorf, und seine Kollegen untersuchen das Verhalten vieler einzelner Kristallite im Metall. Sie beschreiben zum Beispiel verformungsinduzierte Umwandlungen und Zwillingseffekte. "Aber ein Bauteil besteht aus mehreren Milliarden Einzelkristallen, die unmöglich alle einzeln verfolgt werden können. Eine gewisse Ordnung kommt nun dadurch hinein, dass diese Kristalle sich, je nach Belastung, etwa wenn ein Blech verformt oder ein Draht gezogen wird, unterschiedlich umordnen. Hier gilt es intelligente Verfahren zu entwickeln, die in der Lage sind diese Umorientierung zu verfolgen" beschreibt Dierk Raabe den schier unfassbaren Umfang der rechnerischen Aufgabe für die industrielle Anwendung.

Kein Wunder also, dass die rechnerische Voraussage darüber, wie lange ein Vergaser dem Belastungswechsel standhält, wie Schäden an Wolframdrähten in Glühbirnen entstehen und vermieden werden, und wie ein Karosserieteil nach einem Zusammenstoß aussieht, vom Fraunhofer IWM bislang ohne Einbeziehung der detaillierten Kristallinformationen gelöst wurde. Die gemeinsame Arbeitsgruppe soll dazu dienen, die Theorie der Vielkristallmechanik zu vertiefen und andererseits den Transfer der Erkenntnis aus der Grundlagenforschung in die industrielle Anwendung zu gewährleisten. "Unsere Hauptaufgabe wird das Abspecken der kristallmechanischen Modelle an der richtigen Stelle und das Zusammenführen von numerischen Modellen auf unterschiedlichen Größenskalen sein. Der Gewinn für unsere Industriepartner muss darin liegen, dass mit vertretbarem Mehraufwand zusätzliche Informationen über das Werkstoffverhalten zugänglich werden", beschreibt IWM-Institutsleiter Gumbsch, was sich das Fraunhofer IWM in den kommenden drei Jahren vorgenommen hat.

Ziel ist die Entwicklung von Multiskalen-Modellen. Sie verbinden die mathematischen Beschreibungen des Werkstoffverhaltens auf völlig unterschiedlichen Ebenen. Während übliche Finite-Elemente-Modelle das Bauteil in millimetergroße Stücke zerteilen und deren Verhalten berechnen, gilt es nun, Texturmodelle für Korngrößen im Mikrometermaßstab und Modelle auf der Ebene einzelner Kristalle jeweils ineinander zu verschränken, ohne den Bedarf an Rechnerleistung zu hoch schrauben zu müssen.

Der Bedarf an solchen Multiskalen-Simulationsmodellen ist groß: Das Bauteilverhalten kristalliner Werkstoffe aus Metall ist heute in der Mikrosystemtechnik genauso wichtig wie im Automobilsektor, in der Medizintechnik oder der Elektrotechnik.

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Berichte zu: Bauteil Grundlagenforschung Metall

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics