Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perlmutt in höchster Auflösung

30.09.2005


Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und der Bundesanstalt für Materialforschung und -prüfung (BAM) haben neue Feindetails im Aufbau von Perlmutt entdeckt


Schale von Haleotis Laevigata. In den Kreisen sind Einblicke in die Feinstruktur des Perlmutts mit von links nach rechts in steigender Vergrößerung gezeigt. Rot: Rasterelektronenmikroskopische Aufnahme, gelb: Aufnahme mit dem Transmissionselektronenmikroskop (TEM). Orange: Hochaufgelöste TEM-Aufnahme. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Bruchfläche von Perlmutt im Rasterelektronenmikroskop. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Perlmutt, "die Mutter der Perlen", ist nicht nur ein schillerndes Material, das den Betrachter durch seine irisierenden optischen Eigenschaften beeindruckt und das oft als Schmuck Verwendung findet, sondern auch ein hervorragender Werkstoff. Perlmutt besteht zu mindestens 97 Prozent aus Kalk, hat aber eine tausend Mal höhere Bruchfestigkeit als dieser. Ursache hierfür ist der Schichtaufbau des Perlmutts. Max-Planck- und BAM Wissenschaftler haben jetzt entdeckt, dass die Oberfläche der Kalkplättchen keineswegs wie bisher angenommen geordnet ist, wodurch eine Steuerung des Kristalls durch geordnete Schichten auf der organischen Matrix ausgeschlossen werden kann. Das Verständnis der Feinstruktur von Perlmutt und seines Bildungsmechanismus ist essentiell, um dieses raffinierte Bauprinzip bei neuen Materialien nachahmen zu können (PNAS, 6. September 2005).



Perlmutt ist seit langem als interessantes biogenes Material bekannt. Seither versucht man, die Ursachen seiner erstaunlichen Eigenschaften aufzudecken. Seine außergewöhnliche Bruchfestigkeit verdankt es einem schichtförmigen Aufbau aus weichen organischen Schichten und harten Kalkplättchen.

Gelänge es uns auch nur im Ansatz, dieses Bauprinzip zu kopieren, käme es zu einer Revolution in der Bauindustrie. Festere Gipskartonplatten oder leichtere Betonteile bei gleicher Festigkeit sind das potentielle Ziel dieser biomimetischen Materialforschung. Zudem kristallisieren die Kalkplättchen im Perlmutt als Aragonit - einer Kristallform, die unter Umgebungsbedingungen normalerweise nicht stabil ist. Bisher nahm man an, dass diese Kristallisation der Kalkplättchen durch geordnete Eiweißschichten bestimmt wird, die auf einer vorgeformten Chitinschicht liegen. Chitin findet man in der Natur beispielsweise als Gerüstmaterial von Insektenpanzern.

Doch diese Annahmen sind nach den neuen Erkenntnissen der Max-Planck-Wissenschaftler nicht richtig. An Stelle der geordneten kristallinen Schicht, die in Kontakt mit der organischen Matrix stehen soll, fanden die Wissenschaftler winzige, nur fünf Nanometer dicke Schichten von amorphem, also ungeordnetem Kalziumkarbonat an der Oberfläche der einkristallinen Plättchen im Perlmutt.

Diese ungeordnete und gewellte Oberfläche spricht gegen die postulierte spezifische Wechselwirkung zwischen dem anorganischen Material und der organischen Matrix. Dieser Befund konnte durch 13C- und 1H-Festkörper-Kernresonanzspektroskopie eindeutig belegt werden. Darüber hinaus detektierten die Forscher in Kernresonanzexperimenten den amorphen Charakter der Oberflächenschicht und schlossen jede Wechselwirkung dieser Schicht mit dem organischen Gerüstmaterial aus.

Der Grund für die Existenz und Ausbildung der ungeordneten Deckschicht auf dem Kristall könnte darauf beruhen, dass sich Verunreinigungen in der Oberflächenschicht anreichern. Bei der Kristallisation werden diese nicht in das geordnete Kristallgitter eingebaut, ähnlich wie beim Zonenschmelzprozess in der Metallurgie.

Doch die amorphe Schicht (ACC) könnte noch eine weitere Funktion haben. Sie ersetzt die bisher angenommene direkte Wechselwirkung der hochenergetischen (001) Aragonit-Fläche durch eine Gradientenschicht aus Aragonit, ACC und organischer Matrix. Die Grenzflächenenergien dürften hier deutlich niedriger liegen und damit könnte auch eine thermodynamische Triebkraft für die Ausbildung einer amorphen Deckschicht existieren. Woher letztendlich die kristallographische Orientierung der Plättchen rührt, ist bislang noch nicht aufgeklärt. In der jetzt vorgelegten Studie gehen die Wissenschaftler von einer Ladungsanziehung zwischen den anorganischen Plättchen und der organischen Matrix aus.

Originalveröffentlichung:

Nadine Nassif, Nicola Pinna, Nicole Gehrke, Markus Antonietti, Christian Jäger, and Helmut Cölfen
Amorphous layer around aragonite platelets in nacre
PNAS 2005 102: 12653-12655; published online before print: August 29 2005, print: September 6, 2005, Vol. 102, No. 36

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Kalkplättchen Matrix Perlmutt Schicht Wechselwirkung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie