Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Nano-Werkstoffe aus der Mikrowelle

11.07.2005


Materialwissenschaftler und Chemiker der Universität Jena helfen Thüringer Industrie bei Entwicklung von neuem Herstellungsverfahren für Faserverbundwerkstoffe



Flugzeug- und Autobauteile werden aus ihnen gefertigt, Ski und Rennrodler, aber auch Komponenten von Magnetresonanztomographen bestehen aus ihnen. Die Rede ist von Faserverbundwerkstoffen (Composites). Diese leichten und stabilen Werkstoffe bestehen zumeist aus hochfesten Glas- oder Carbonfasern, die in Kunstharz eingebettet werden. Das Prinzip ist alt: Eisenstangen durchziehen den sonst spröden Beton, Strohfasern steigerten früher die Festigkeit von Lehmziegeln. Im Verkehrsflugzeugbau, z. B. beim neuen Airbus A380, hat der steigende Einsatz der faserverstärkten Kunststoffe zum Wettbewerbsvorteil der europäischen Industrie geführt. Das geringere Gewicht senkt die Kosten und steigert durch die Treibstoffersparnis die ökologische Verträglichkeit von Flug- und Fahrzeugen. Will man allerdings große Stückzahlen von Teilen aus Faserverbundwerkstoffen rasch, in Serie und mit gleichbleibender Qualität produzieren, erfordert dies neue Fertigungsverfahren. Das Thüringer Wirtschaftsministerium fördert daher bis zum Herbst 2006 die Arbeiten vom Materialwissenschaftlern und Chemikern der Universität Jena, die in Kooperation mit der Thüringer Firma Schmuhl ein neues Verfahren und neue Materialien zur Herstellung von Hochleistungsverbund-Bauteilen entwickeln. Insgesamt fließen im Rahmen des kürzlich gestartete Verbundprojektes 346.286 Euro an das Institut für Materialwissenschaft und Werkstofftechnologie (IMT) und das Institut für Organische Chemie und Makromolekulare Chemie der Friedrich-Schiller-Universität.



"Bisher musste immer die gesamte Werkzeugform erwärmt werden, da das eingeleitete Harz bei höheren Temperaturen aushärtet", erklärt PD Dr. Jörg Bossert. Der Forscher vom Lehrstuhl für Materialwissenschaft will, um die Aushärtungszeit für große Teile zu verkürzen und Energie zu sparen, Mikrowellen einsetzen. Zur Steigerung der Festigkeit und der Oberflächenqualität sollen u. a. winzigste Nanopartikel aus Keramik in den Faserverbundwerkstoff eingearbeitet werden. Auch die Chemikerin Prof. Dr. Elisabeth Klemm wurde mit ins Boot geholt. Sie wird einen Polymerwerkstoff auf der Basis von Epoxyd-Systemen beisteuern, der diese Art der Aushärtung ohne Volumenminderung übersteht. "Die so hergestellten Teile sollen am Ende auch unter extremen klimatischen Bedingungen nicht spröde oder weich werden", erläutert die Chemikerin das Ziel.

Kontakt:
PD Dr. Jörg Bossert
Institut für Materialwissenschaft und Werkstofftechnologie
der Universität Jena
Tel.: 03641 / 947733
E-Mail: joerg.bossert@uni-jena.de

Prof. Dr. Elisabeth Klemm
Institut für Organische Chemie und Makromolekulare Chemie
der Universität Jena
Tel.: 03641 / 948200
E-Mail: c9klel@rz.uni-jena.de

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie