Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Frühe Metallurgen beschlagener als vermutet

24.05.2005


Moderne Werkstoffwissenschaften vermitteln der Archäologie neue Erkenntnisse



Professor Rainer Telle beschäftigt sich in der Regel mit Hochleistungskeramiken. Der Inhaber des Lehrstuhls für Keramik und feuerfeste Werkstoffe im Institut für Gesteins-hüttenkunde der RWTH Aachen pflegt aber neben der anwendungsorientierten Entwicklungsarbeit für namhafte Unternehmen auch archäologische Forschungen. "Der Wandel vom Rohstoff zum Werkstoff hat mich schon immer fasziniert", gibt der gelernte Mineraloge zu. Und diese Passion führte ihn zurück bis zu den ersten Verhüttungsprozessen der Menschheit ins dritte vorchristliche Jahrtausend. Welche Materialien wurden damals verwendet? Was wurde aus ihnen gefertigt? Bei welchen Temperaturen wurden die Gerätschaften gebrannt und wie lange haben sie gehalten? "Die Beantwortung dieser Fragen gibt Aufschluss über die gezielte frühzeitliche Rohstoffverwendung und den Produktionsprozess", so Telle. "Damit halten die modernen Ingenieurwissenschaften verstärkten Einzug in die Archäologie."

... mehr zu:
»Metallurgen »Ofenwände »Rohstoff


Die erste Verwendung feuerfester Werkstoffe lässt sich im jordanischen Fenan als der wohl frühesten Montanregion der Welt über vier Jahrtausende hinweg nachvollziehen. In Zusammenarbeit mit dem Deutschen Bergbau-Museum Bochum konnten die Aachener Forscher dort wichtige Aufschlüsse über die Zusammensetzung und die Arbeitsweise der vorzeitlichen Kupferschmelzer gewinnen. Dünnschliffe der archäologischen Funde, Untersuchungen im Rasterelektronenmikroskop und chemische Analysen ergaben, dass schon damals aus Mangel an natürlichen feuerfesten Rohstoffen keramische Verbundwerkstoffe hergestellt wurden. "Wir konnten nachweisen, dass für den Bau der Öfen spezielle vorgebrannte Komponenten verwendet wurden", erklärt Professor Telle. Dieses Material wurde in Form von sogenannten Ladyfingern - zigarrengroßen Tonstäben - in die Ofenwände eingebracht und somit mehrmals gebrannt. Dieser Prozess ist in der modernen Hochleistungskeramik als "Faserverstärkung" bekannt. "Die ersten Metallurgen haben somit Verbundwerkstoffe als verstärkende Elemente bewusst eingesetzt, um die Ofenwände temperaturbeständiger und haltbarer zu machen", resümiert Rainer Telle.

Im Rahmen von Forschungen an Funden in der Nähe des bekannten keltischen Fürstengrabes von Hochdorf bei Ludwigsburg ergaben sich in Zusammenarbeit mit dem Fachbereich Ur- und Frühgeschichte der Christian-Albrechts-Universität Kiel weitere Hinweise auf fortschrittliche Vorgehensweisen bei der Metallgewinnung. Es konnte nämlich festgestellt werden, dass bis zu 120 Kilometer entfernt vorhandene keramische Rohstoffe Verwendung fanden. "Wir gehen davon aus", so Professor Telle, "dass der Metallurge des 6. Jahrhunderts vor Christus wertvolle Bestandteile für den Guss von Bronze mit sich führte. Er betätigt sich somit als wandernder Experte, der vermutlich ausgediente Teile auf seiner Wanderschaft einsammelte und dann in größerer Siedlungen in einem Recyclingverfahren zu neuen Bronzeteilen goss." Damit fanden die Wissenschaftler heutige Verfahren der Massenherstellung schon in der Hallstattzeit verbreitet.

Ein weiteres Beispiel für hochentwickelte Messingherstellung konnten die Forscher aus Aachen und vom Institut für Vor- und Frühgeschichte der Universität Bonn anhand von Tiegeln aus dem ältesten Militärlager am Nieder- und Mittelrhein, Novaesium bei Neuss, liefern. Die aus der Zeit des Kaisers Tiberius ( etwa 20 - 37 nach Christus) stammenden Tiegel lassen nach Einschätzung von Professor Telle eindeutig erkennen, dass das Messing im Zementationsprozess hergestellt wurde. Dazu wird stückiges Zinkerz mit Holzkohle und metallischem Kupfer in einem geschlossenen Tiegel erhitzt. Danach werden die gewonnenen Messingkörner erneut in einer verlorenen Form erschmolzen. "Dieser Prozess war bei den Römern gängige Technik", beurteilt Professor Telle das Verfahren. "Leider ging dieses Wissen mit dem Untergang Roms verloren und wurde erst Tausend Jahre später wieder entdeckt."

Die Forschungen belegen nach Ansicht des Aachener Werkstoffwissenschaftlers eindeutig, dass die Entwicklung feuerfester Materialien zielgerichteter erfolgte als bislang angenommen. "Hier ist noch eine Reihe von Untersuchungen erforderlich, die unsere Kenntnisse von der frühen Metallurgie maßgeblich erweitern und unter Umständen grundlegend revidieren werden." Entsprechende Forschungsanträge hat Professor Telle bereits formuliert. Toni Wimmer

Weitere Informationen erhalten Sie bei
Univ.-Prof. Dr. Rainer Telle
Lehrstuhl für Keramik und feuerfeste Werkstoffe
der Rheinisch-Westfälischen technischen Hochschule (RWTH) Aachen
Mauerstraße 5
52064 Aachen
Telefon 0241/80-94968
Fax 0241/80-92226
e-mail: telle@ghi.rwth-aachen.de

Thomas von Salzen | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Berichte zu: Metallurgen Ofenwände Rohstoff

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics