Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siemens sieht Polymere und Keramik als Schlüsselwerkstoffe für Innovationen

14.10.2004


Die Geschwindigkeit und Präzision, mit der ein Computertomograph Bilder erzeugt, die Erhöhung des Wirkungsgrades von Gasturbinen, die Senkung des Treibstoffverbrauchs bei Fahrzeugen - bei diesen Innovationsbeispielen komplexer Systeme nehmen neue Materialien eine Schlüsselrolle ein. "Nur wer hierfür die eigene Kompetenz kontinuierlich weiterentwickelt und im internationalen Wettbewerb in der ersten Reihe steht, kann bei Produkten und Lösungen Trendsetter sein", betonte Prof. Dr. Claus Weyrich, Mitglied des Vorstands der Siemens AG und Leiter der Zentralabteilung Corporate Technology heute in München. Dabei ziele die Materialforschung bei Siemens auf sehr konkrete Anwendungen ab. "Wir setzen vor allem auf neue Polymere, Keramiken und die Nanotechnologie", so Weyrich. Der Grund hierfür liegt in den nahezu unbegrenzten Möglichkeiten, die Eigenschaften derartiger Werkstoffe zu gestalten und an unterschiedliche Produktanforderungen anzupassen.



Die zunehmende Leistungsfähigkeit von Produkten und Systemen und die mit ihr einhergehende Komplexität erfordern nicht nur die perfekte Beherrschung der Integration unterschiedlicher Technologien, sondern auch eine Spitzenstellung bei so genannten Schlüsseltechnologien. "Dazu gehören für uns auch neue Materialien, denn sie waren immer schon Auslöser und Treiber innovativer Entwicklungen", erklärte Weyrich.

... mehr zu:
»Computertomograph »Keramik »Polymer


Neue Materialien sind einer der Forschungsschwerpunkte von Corporate Technology. Ein Beispiel: elektrisch leitende Polymere. "Sie vereinen die Vorteile von zwei Grundstoffen - die einfache, kostengünstige Verarbeitung des Kunststoffes und die elektrische Leitfähigkeit von Metallen. Im Fokus unseres Interesses stehen neuartige Displaytechnologien auf der Basis von organischen Leuchtdioden mit bislang unerreichter Helligkeit und Brillanz ebenso wie elektrochrome Displays, die die Grundlage für ,elektronisches Papier’ bilden", so Thomas Grandke, Leiter der Siemens Materialforschung.

Die Keramikforschung arbeitet unter anderem an einer exakten Farbtönung für LED-Leuchtstoffe. "Die Automobilhersteller haben beispielsweise ganz genaue Vorstellungen, wie die Farbgebung ihrer Armaturenbeleuchtung aussehen sollte", erklärte Grandke eine typische Kundenanforderung. "Die erwarten nicht eine Grundfarbe, wie zum Beispiel Blau, sondern einen definierten Blauton. Mit unseren Leuchtstoffen kann man nun nach den Spezifikationen der Automobilhersteller Leuchtdioden nach Wunsch - ,Color on Demand’ - produzieren."

Ein weiteres Ergebnis der Keramikentwicklung findet man in Computertomographen. Eine Anforderung der Ärzte ist, die Verweildauer der Patienten in dem Gerät soweit wie möglich zu reduzieren und dennoch möglichst scharfe Bilder zu erhalten. Ein Wettbewerbsvorteil des neuesten Produktes "Somatom Sensation 64" liegt daher darin, dass sich damit beispielsweise 3D-Bilder des schlagenden Herzens in nur neun Sekunden erstellen lassen. Hochempfindliche und schnelle Keramikdetektoren, die von Siemens eigens für Computertomographen entwickelt wurden, tragen dazu bei, solche Spitzenwerte zu erreichen - bei einer bislang unerreichten räumlichen Auflösung von 0,4 Millimetern, die noch die kleinsten Blutgefäße zeigt.

"Für die Zukunft erwarten wir uns auch wichtige Ergebnisse aus der Nanoforschung", unterstreicht Grandke die wachsende Bedeutung dieses Trends. Als Nanotechnologie werden Verfahren bezeichnet, die mit Strukturen kleiner als 0,1 Mikrometer (= 100 Nanometer) arbeiten. Aufgrund physikalischer Quanteneffekte treten bei diesen winzigen Abmessungen neue Materialeigenschaften auf, die sich nutzen lassen. Auf erste Erfolge kann Grandke hier bereits verweisen. Der Wirkungsgrad organischer Photodetektoren, in denen Fullerene, ein typischer "Nanowerkstoff", zum Einsatz kommen, konnte kürzlich von bisher höchstens drei Prozent auf nunmehr fünf Prozent gesteigert werden, wodurch diese Technologie einer kommerziellen Nutzung deutlich näher gekommen ist.

Guido Weber | idw
Weitere Informationen:
http://www.siemens.com

Weitere Berichte zu: Computertomograph Keramik Polymer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics