Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie wächst eine Oxidhaut auf einem Metall?

25.04.2001


Fast eine halbe Million Mikrospiegel trägt dieses

mechatronische Bauteil, das seit längerem für

Videoprojektionen eingesetzt wird. In einem neuen Messgerät

tasten feine Lichtstrahlen Oberflächen berührungslos ab. 

©Fraunhofer

IPT


In dieser Woche ist Christelle Nivot von der Université de Bourgogne aus dem französischen Dijon (Burgund) für ihre Diplomarbeit bei Dipl. Phys. Gernot Strehl zu Besuch. Sie nutzt eine selbst gebaute
Versuchsapparatur der Clausthaler Wissenschaftler, die Hochtemperaturoxidationsapparatur, um eine grundlegende Frage zu untersuchen: Wandern beim Wachstum der Schutzschichten die Metallatome von innen nach außen und die Haut wächst an ihrer Außenseite weiter, oder dringen die Sauerstoffatome durch die Schutzschicht in den Grenzbereich der Schutzschicht zum Basismaterial vor und treiben dort die Oxidation voran?

Die Werkstoffforschung entwickelt Materialien, die immer höheren Temperaturen standhalten, da damit oft der Wirkungsgrad von Maschinen und chemischen Prozessen gesteigert werden kann, was durch einen niedrigeren Energieverbrauch letztendlich Portemonnaie und Umwelt schont. Keramiken sind stoß- und bruchempfindlich und kommen daher für viele Einsatzgebiete nicht in Frage. Metalle aber korrodieren stark bei hohen Temperaturen. Gibt man dem Metall Aluminium, Silizium oder Chrom hinzu, so wandern diese bei höheren Temperaturen aus dem Metall an die Oberfläche, reagieren mit dem Sauerstoff und umgeben so das Basismetall mit einer Schutzschicht aus Oxid. Sauerstoff kann nur noch stark verlangsamt durch diese Schutzschicht dringen und das Metall korrodieren. An der Verbesserung dieser Schutzschichtbildung arbeitet seit vielen Jahren die Arbeitsgruppe um Professor Dr.-Ing. Günter Borchardt im Institut für Metallurgie der TU Clausthal.
In dieser Woche ist Christelle Nivot von der Université de Bourgogne aus dem französischen Dijon (Burgund) für ihre Diplomarbeit bei Dipl. Phys. Gernot Strehl zu Besuch. Sie nutzt eine selbst gebaute Versuchsapparatur der Clausthaler Wissenschaftler, die Hochtemperaturoxidationsapparatur, um eine grundlegende Frage zu untersuchen: Wandern beim Wachstum der Schutzschichten die Metallatome von innen nach außen und die Haut wächst an ihrer Außenseite weiter, oder dringen die Sauerstoffatome durch die Schutzschicht in den Grenzbereich der Schutzschicht zum Basismaterial vor und treiben dort die Oxidation voran?

Wie macht sie das? Sauerstoff kommt in der Natur in zwei Varianten vor. Einmal als Isotop mit der Massenzahl achtzehn und einmal mit der Massenzahl sechzehn. Chemisch sind beide ununterscheidbar. Mit einem Massenspektrometer können die beiden Varianten nach ihrem Gewicht getrennt werden. Christelle Nivot überströmt ihre Proben bei 1100 Grad Celsius zuerst mit Sauerstoff(16)-Gas und dann mit Sauerstoff(18)-Gas. Nach der zweistufigen Oxidation wird die Schicht untersucht. Mit einem Ionenstrahl werden die Proben beschossen und schichtweise abgetragen. Jede Schicht wird im Massenspektrometer analysiert. Enthält sie Sauerstoff(16)- oder Sauerstoff(18)-Atome?

Denn mit der Beantwortung dieser Frage kann der Transportmechanismus aufgeklärt werden. Wenn die Schutzschicht von innen nach außen wächst, indem die Metallatome durch die Schutzschicht an die Oberfläche diffundieren, dann müssten die Schichten so aufgebaut sein: Oben eine Sauerstoff(18)-Oxidschicht, darunter eine Sauerstoff(16)-Oxidschicht. Beide Schichten wären glatt voneinander getrennt. Bleiben die Metallatome aber an Ort und Stelle, und die Sauerstoffatome dringen durch die Schutzschicht nach innen, dann wächst die frische Oxidhaut an der Grenzschicht Basismaterial zur Schutzschicht. Wenn dieser Transportmechanismus die Vorgänge steuert, dann liegt "oben" eine Sauerstoff(16)-Schicht und darunter ist eine Sauerstoff(18)-Oxidschicht.

Ist der Transportprozess erst einmal aufgeklärt, können Strategien entwickelt werden, die fortschreitende Oxidation zu verlangsamen. "Wir wollen einige Elemente aus der Gruppe der Seltenen Erden dem Basismetall hinzugeben und dann prüfen, ob sie vielleicht die Metallatome vom Wandern an die Oberfläche abhalten können", erläutert Gernot Strehl. Mit dieser Technik könnte man dann die Oxidation verlangsamen und so die Lebensdauer von Heizdrähten in Toastern und Haartrocknern, um zwei Beispiele aus dem täglichen Leben zu nennen, verlängern.

Weitere Informationen:
Dipl. Phys. Gernot Strehl
Institut für Metallurgie
Robert-Koch-Str. 42
38678 Clausthal-Zellerfeld
Tel.: +49-(0)5323-72-2094
Fax.: +49-(0)5323-72-3184
eMail: gernot.strehl@tu-clausthal.de

Weitere Informationen finden Sie im WWW:

Jochen Brinkmann | idw

Weitere Berichte zu: Metall Metallatom Sauerstoff Schicht Schutzschicht

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europaweit einzigartige Faserpilotanlage geplant
29.09.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Forschern gelingt Umformung von Hybridrohren aus Aluminium und Stahl
27.09.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

Folgenschwere Luftverschmutzung: Forum zur Chemie der Atmosphäre

28.09.2016 | Veranstaltungen

European Health Forum Gastein 2016 beginnt

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA entdeckt stellaren Kokon mit seltsamer chemischer Zusammensetzung

29.09.2016 | Physik Astronomie

Korrelierte Magnete aus einzelnen Atomen

29.09.2016 | Physik Astronomie

Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

29.09.2016 | Physik Astronomie