Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aluminium beizen mit dem Klebeband

01.07.2013
Ein neues Klebeband macht das lokale Beizen von Aluminium einfacher, sicherer und umweltfreundlicher. Im Gegensatz zu bisherigen Verfahren wie Beizpasten, -sprays oder -bädern fällt kein Spülwasser an, das aufwendig entsorgt werden muss.

Das Leichtmetall Aluminium findet traditionell im Flugzeugbau Anwendung und überall dort, wo es auf ein geringes Gewicht ankommt. Auch in anderen Branchen, wie dem Automobilbau, wird es immer häufiger eingesetzt. Allerdings ist Aluminium ein unedles Metall und muss vor Korrosion geschützt werden. Dazu wird es in den meisten Fällen beschichtet, zum Beispiel mit einem Lack. Für Leichtbaukonstruktionen bietet sich zunehmend das Kleben als Fügetechnik an.


Anwendung des Beizklebebands vor der Reparatur eines Lackschadens. Der Lack wird durch Schleifen entfernt, das Beizband zur Vorbehandlung der Metalloberfläche aufgebracht. Nach dem Abziehen des Klebebands und einer kurzen Reinigung mit einem feuchten Tuch kann die Oberfläche neu lackiert werden. © Fraunhofer IFAM

Sowohl das Lackieren als auch das Kleben sind aber nur nach einer Vorbehandlung des Aluminiums möglich. Diese dient dazu, undefinierte Schichten aus Oxiden, Hydroxiden und Verunreinigungen von der Oberfläche zu entfernen, die sich praktisch auf jeder technischen Aluminiumoberfläche befinden. Ein wichtiges Vorbehandlungsverfahren ist das Beizen, bei dem Chemikalien in einem Behandlungsbad die Verunreinigungen auflösen und eine frische Oberfläche des Metalls freigelegt wird.

Schwierig ist der Einsatz von Badverfahren für große Teile, die nur teilweise behandelt werden müssen oder im Falle von Nacharbeiten und Reparaturen. Hier werden lokale Behandlungen immer wichtiger. Die Hersteller verwenden dafür vorwiegend Beizpasten oder Beizsprays, die von Fachkräften per Hand aufgetragen beziehungsweise aufgesprüht werden. Das Problem: Die genutzten Stoffe sind sauer oder alkalisch. Der Rest des Bauteils muss aufwendig geschützt, die Beize abgespült und das Spülwasser aufbereitet sowie speziell entsorgt werden. »Aktuell ist keine zufriedenstellende Lösung für das lokale Beizen verfügbar. Uns kam deshalb die Idee eines Beizklebebands, das man bequem auf den Stellen aufbringen kann, die behandelt werden müssen«, beschreibt der Experte für Adhäsions- und Grenzflächenforschung Dr. Malte Burchardt den Forschungsansatz am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen.

Neuartiger Klebstoff mit hohem Wasseranteil

Dazu war die Entwicklung eines völlig neuen Klebstoffs erforderlich: Einerseits soll sich das Beizklebeband wie ein gewöhnliches Klebeband auftragen und danach rückstandsfrei abziehen lassen. Andererseits müssen alle für den Beizprozess notwendigen Chemikalien in den Klebstoff integriert werden. »Für das Beizen wird ein hoher Wasseranteil im Klebstoff benötigt. 95 Prozent aller herkömmlichen Klebstoffe für Klebebänder sind jedoch lösemittelbasiert und funktionieren nicht mehr, sobald Wasser mit ins Spiel kommt«, schildert Dr. Malte Kleemeier aus dem Bereich Klebstoffe und Polymerchemie die Herausforderung. Den Fraunhofer IFAM-Wissenschaftlern gelang es, auf Grundlage wasserlöslicher Polymere eine geeignete Klebstoffformulierung zu entwickeln.

Die Technologie ist ebenso leistungsfähig wie das Beizen mit Pasten, Sprays oder in Beizbädern. Das haben praktische Tests gezeigt. Im Gegensatz zu den bisherigen Verfahren fällt kein Spülwasser an, das aufwendig entsorgt werden muss. Es reicht aus, das Bauteil nach dem Abziehen des Beizklebebands mit einem feuchten Tuch kurz abzuwischen. »Die Beizklebebänder sind einfach, sicher und umweltfreundlich zu handhaben«, fasst Kleemeier die Vorteile zusammen.

Die Forscher entwickelten das neue Klebeband in Zusammenarbeit mit Industriepartnern, unter anderem aus der Luftfahrt- und Automobilbranche. Gerade in Bereichen mit hohen Qualitätsstandards kann das Klebeband seine Vorteile ausspielen. Im letzten Jahr wurde die Entwicklung mit dem »SURFAIR Award for Innovation« ausgezeichnet.

Im nächsten Schritt will das IFAM die Bänder zusammen mit seinen Partnern zur Fertigungsreife bringen. Gleichzeitig testen sie, ob sich das Beizklebeband für andere Werkstoffe, zum Beispiel Edelstahl, nutzen lässt.

Dr.MalteBurchardt | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/juli/aluminium-beizen-mit-dem-klebeband.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Aufgewärmt am Start
05.12.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik