Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aktuatoren – bewegt wie die Mittagsblume

29.06.2015

Materialien nach dem Vorbild mancher Pflanzen könnten Robotern künftig zu natürlichen Bewegungen verhelfen

Wenn Ingenieure bewegliche Komponenten von Robotern entwickeln, können sie sich demnächst vielleicht der Kniffe von Pflanzen bedienen. Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Harvard University in Cambridge (USA) stellen jetzt poröse Materialien vor, die als Aktuatoren, also als sich bewegende Teile, dienen könnten. Der Bewegungsmechanismus der Materialien ähnelt dabei dem mancher Pflanzengewebe.


Der Aktuator, den Max-Planck-Forscher entwickelt haben, besitzt eine wabenförmige Zellstruktur. Die Wände der Zellen bestehen aus einem nicht quellbaren Polymer, ein quellbares Polymer füllt das Innere der Kammern. Wenn der Druck im Inneren der Zellen steigt, etwa weil das quellbare Polymer Flüssigkeit aufnimmt, dehnt sich die Struktur in einer Richtung aus.

© Advanced Materials/ MPI für Kolloid- und Grenzflächenforschung

Erhöht sich in den Poren des Polymermaterials der Druck, quillt dieses in eine bevorzugte Richtung und dehnt sich damit aus. Die Forscher ahmen auf diese Weise den Mechanismus nach, durch den sich manche unbelebte Pflanzenteile wie etwa die Deckel der Samenkapseln der Mittagsblume bewegen.

Die Forscher analysierten auch, wie das Ausdehnungsverhalten entsprechender Materialien von deren Struktur abhängt und überprüften zugleich ein dazu entwickeltes theoretisches Modell. Anhand der neuen Erkenntnisse könnten sich bewegliche Komponenten mit besonders natürlichen Bewegungseigenschaften etwa für Roboter konzipieren lassen.

Waldspaziergänger kennen das Bild. Bei Regen sind die Kiefern- und Tannenzapfen, die auf dem Boden liegen, verschlossen. Ist es dagegen trocken, öffnen sich die Zapfen. Auf diese Weise verhindern die Nadelgewächse, dass die Samen durch Feuchtigkeit zu schwer würden, um durch den Wind weit verbreitet zu werden. Die Mittagsblume macht es genau anders herum: Sie setzt ihren Samen gerade bei Feuchtigkeit frei. Ihr geht es dabei um perfekte Bedingungen zum Keimen. Eine ausgeklügelte Deckschicht auf den Samenkapseln sorgt daher dafür, dass die Kapseln bei Trockenheit verschlossen bleiben, sich aber bei Nässe öffnen.

In beiden Beispielen sorgt die Feuchtigkeit dafür, dass sich pflanzliche Zellen in markanter Weise verformen. Unter Aufnahme von Wasser dehnen sie sich – und damit das Gewebe – so aus, dass sich ganze Pflanzenteile in einer definierten Weise bewegen. Bei den Zapfen schließen sich die Schuppen, während Feuchtigkeit den Deckel der Mittagsblumen-Samenkapsel öffnet.

Ein Antrieb, der allein auf physikalischen Mechanismen basiert

Für Forscher ist besonders spannend, dass sich der energetische Antrieb für diese Bewegungen nicht aus Stoffwechselvorgängen speist, sondern allein auf physikalischen Mechanismen beruht. Aus biologischer Sicht muss das auch so sein – immerhin ist das Material, etwa im Fall der abgefallenen Zapfen, bereits tot.

Wie Materialeigenschaften, Geometrie und Anordnung der Zellen die makroskopische Bewegung im Detail beeinflussen, haben nun Forscher vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam näher untersucht. Sie entwickelten dafür sowohl ein Computersimulation als auch gewebeähnliche Materialien aus einem porösen Polymer, in dem die Poren etwa den Zellen im biologischen Material entsprachen.

Ein interessanter Befund: Nicht nur die Form der einzelnen Zelle entscheidet über die Art der Ausdehnung. Entscheidend ist auch, wie die Zellen zueinander angeordnet sind. In einem Fall testeten die Wissenschaftler drei unterschiedliche wabenartige Strukturen aus ein und derselben Basiszelle. Für diese hatten sie eigens eine achteckige Form konstruiert – eine Art Rechteck, bei dem die beiden Hälften stufenförmig gegeneinander verschoben sind.

Die zusätzlichen Ecken, die so an zwei Seiten der Zelle entstehen, sollten wie Scharniere wirken, an denen sich die Zelle besser verformen lassen müsste – so die Idee. Denn aus einer früheren Studie wussten die Potsdamer Forscher, dass sich eher Winkel in der Wand von Zellen ändern, wenn diese sich ausdehnen, als dass sich die Zellwände strecken. Letzteres erfordert nämlich deutlich mehr Energie.

Steigt durch Luft oder eine Flüssigkeit der Druck im Inneren der Zellen, dehnten sich zwei der drei Wabenstrukturen bevorzugt in eine Raumrichtung aus, bildeten dabei aber jeweils unterschiedliche neue Zellgeometrien aus. Bei der dritten Anordnung dehnte sich die Struktur schräg aus, es kam also sozusagen zu einer Scherwirkung auf den Zellverbund. Für alle drei Anordnungen galt: Während der anfängliche Druckanstieg unmittelbar zu einer recht großen Ausdehnung führte, nahm das Ausmaß der zusätzlichen Expansion mit steigendem Druck immer mehr ab.

Ein flexibler Hebel, um Bauteile gezielt zu bewegen

„Wir können die Art der makroskopischen Ausdehnung über die Form der Zellen und über ihre Anordnung sehr gut kontrollieren“, sagt John Dunlop, der am Potsdamer Max-Planck-Institut im Bereich Biomaterialien die Arbeitsgruppe „Biomimetic Actuation and Tissue Growth“ leitet und an den aktuellen Arbeiten maßgeblich beteiligt war. „Wir haben damit einen sehr flexiblen Hebel an die Hand bekommen, um zum Beispiel bestimmte Bauteile sehr definiert und charakteristisch zu verformen und damit zu bewegen.“

Noch seien diese Forschungen sehr grundlegend, langfristig können sich die Wissenschaftler aber zum Beispiel einen Einsatz in der Robotik vorstellen. Statt über Motoren mit recht kantigen und starren Bewegungsmustern seien dann möglicherweise Bewegungsabläufe denkbar, die sehr viel weicher, abgestufter und letztlich natürlicher wären, so Dunlop.

Bewegliche Teile eines solchen Roboters, die Aktuatoren, bestünden dabei vielleicht aus einem porösen Polymer mit definiert eingestellten Poreneigenschaften. „Die eigentliche Bewegung ließe sich dann zum Beispiel über Druckluft oder eine quellfähige Flüssigkeit in den Poren steuern“, erklärt Dunlop. Eventuell wären solche Konstruktionen sogar robuster und weniger fehleranfällig als elektronisch gesteuerte Roboter, so der Wissenschaftler. Entsprechende praktische Anwendungstests in der Robotik-Industrie müssten all dies aber erst noch zeigen.

Für die Forscher war nebenbei noch etwas anderes erfreulich: dass nämlich die theoretischen Befunde aus der Computersimulation und die experimentellen Messreihen an den gezielt hergestellten porösen Polymermaterialien fast identisch waren. Lediglich das Ausmaß der Ausdehnung fiel im Experiment etwas kleiner aus als in der virtuellen Simulation. „Wir haben damit die Möglichkeit, solche Materialien beliebig am Computer zu designen und das Verhalten dann im Experiment zu testen“, so Dunlop.

Künstliche Polymerwaben aus dem 3-D-Drucker

In den entsprechenden Zellen von Tannenzapfen und Samenkapseln der Mittagsblume spielt die Zusammensetzung der Zellwände eine wichtige Rolle beim Ausdehnungsprozess. Sie setzen sich nämlich vor allem aus dem nicht quellfähigen Lignin und der gut quellenden Cellulose zusammen.

Für ihr praktisches Experiment simulierten die Forscher diesen Aufbau, indem sie zwei unterschiedlich quellfähige Polymerschichten miteinander verbanden. Hergestellt haben das Material Wissenschaftler der Harvard University in Cambridge, USA, mit einem Multimaterial-3-D-Drucker. Für den Quellvorgang nutzten die Potsdamer Forscher ein Lösungsmittel.

Für spätere praktische Anwendungen können sich die Potsdamer zum Beispiel poröse Polymermaterialien vorstellen, deren Poren mit einer wasseranziehenden Flüssigkeit gefüllt sind, zum Beispiel einem sogenannten superabsorbierenden Hydrogel.

Offen ist noch, wie sich die Bewegung solcher Zellstrukturen in einem technisch genutzten Aktuator zuverlässig umkehren lässt. Aber vielleicht können sich die Forscher auch in dieser Frage noch etwas bei den Tannenzapfen oder den Samenkapseln der Mittagsblume abschauen. Schließlich beherrschen die es, sich beliebig zu öffnen – und wieder zu schließen.


Ansprechpartner

Dr. John Dunlop
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9420

E-Mail: John.Dunlop@mpikg.mpg.de


Prof. Dr. Peter Fratzl
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9401

Fax: +49 331 567-9402

E-Mail: gabbe@mpikg.mpg.de


Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9203

Fax: +49 331 567-9202

E-Mail: katja.schulze@mpikg.mpg.de


Originalpublikation
Lorenzo Guiducci, James C. Weaver, Yves J. M. Bréchet, Peter Fratzl und John W. C. Dunlop

The Geometric Design and Fabrication of Actuating Cellular Structures

Advanced Materials Interfaces, 26. Juni 2015; doi: 10.1002/admi.201500011

Dr. John Dunlop | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie