Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In-Prozess-Temperaturmessung ermöglicht optimale Auslegung des Kühlschmierstoffs

10.07.2009
Die optimale Applikation von Kühlschmierstoff (KSS) kann die Gefahr des Auftretens thermischer Schädigungen der Bauteilrandzone bei einer Feinbearbeitung wie dem Schleifen vermindern. Eine werkzeugseitige In-Prozess-Temperaturmessung liefert Kenntnisse zur Kontaktzonentemperatur und somit zur Effizienz der Kühlung.

Beim spanenden Bearbeitungsverfahren Schleifen besteht eine relativ große Kontaktfläche zwischen Werkzeug und Werkstück. Zudem herrschen komplexe Trenn- und Reibungsverhältnisse im Schleifspalt. Die eingebrachte Energie wird hauptsächlich durch Reibung in Wärme umgewandelt. Die Temperaturentwicklung und -verteilung im Werkstück wird maßgeblich durch den KSS beeinflusst, der durch einen Schmierfilm die Reibung zwischen Werkstück und Schleifscheibe verringert und zusätzlich Wärme aufnimmt und abtransportiert.

Bei großen Wärmemengen, die in das Werkstück fließen, kann es zu thermischen Schädigungen der Randzone des Werkstücks kommen, die Gefügeveränderungen, ungünstige Eigenspannungsverläufe und Risse zur Folge haben können. Diese Schädigungen sollen durch den Einsatz von KSS verhindert werden. Eine Überversorgung sollte aber vermieden werden, weil damit hohe Kosten für den Kühlschmierstoff sowie dessen Pflege und Entsorgung verbunden sind.

Schleifspalt bedarfsorientiert mit KSS versorgen

Zur Beherrschung des KSS-Einsatzes beim Schleifen gehört folglich in erster Linie die bedarfsorientierte Versorgung des Schleifspalts, also die Vermeidung sowohl von Über- als auch Unterversorgung. Der für die Praxis einfachste Ansatz ist die Änderung von Stellgrößen wie Düsenposition oder Düsenart

Temperaturerfassung mittels Infrarotsensorik

Zur Optimierung des KSS-Systems und somit zur Verringerung der thermischen Werkstückbeanspruchung ist idealerweise die Kenntnis über die Temperaturverhältnisse direkt in der Kontaktzone zwischen Werkstück und Schleifscheibe notwendig. Zum Zweck der Temperaturerfassung und darauf aufbauend zur Optimierung des Zufuhrsystems wurde am IWT zusammen mit der FOS Messtechnik GmbH die werkzeugseitige In-Prozess-Temperaturmessung in der Kontaktzone zwischen Werkstück und Schleifscheibe mittels Infrarotsensorik entwickelt.

Das schnelle berührungslose Infrarot-Messsystem zur In-Prozess-Messung der Temperatur im Schleifspalt wurde in einem vom Bundesministerium für Wirtschaft und Arbeit geförderten Entwicklungsprojekt von der FOS Messtechnik und dem IWT Bremen in einen funktionsfähigen Prototypen umgesetzt.

Schleifscheibe mit Temperatursensor

Die dargestellte Schleifscheibe mit integriertem Temperatursensor besteht aus den Komponenten Schleifkörper, ringförmiges Metallgehäuse und darin untergebrachte Messelektronik. Zum System gehört auch die Messwertempfangs- und -anzeigeeinheit.

Die Wärmestrahlung des Werkstückes wird über einen radial in die Schleifscheibe eingebetteten Lichtleiter auf einen schnellen IR-Sensor übertragen. Die nachfolgende Messverstärkerelektronik wandelt das Sensorsignal in temperaturproportionale Signalspannungswerte um, die drahtlos zur Messwertempfangs- und -anzeigeeinheit übertragen werden.

Vor dem Einsatz der Schleifscheibe im Schleifprozess erfolgt die Kalibrierung mittels Temperaturvergleich an einem beheizten und mit einem Thermoelement versehenen Werkstück. Nach der erfolgreichen Kalibrierung wurde die Funktionalität des Systems in mehreren Untersuchungen verifiziert.

Temperatur korreliert mit bezogenen Schleifkräften

Die Korrelation der Temperatur zu den bezogenen Schleifkräften ist gut erkennbar. Insbesondere die Übergänge der einzelnen Prozessstufen bei etwa 10 s von Schruppen auf Schlichten und bei knapp 20 s von Schlichten auf Feinschlichten sind auch im aufgezeichneten Temperaturverlauf nachvollziehbar. Sie schlagen sich mit einem Temperaturunterschied von etwa 100 beziehungsweise 150 °C nieder.

Das System kann somit zur Vermeidung von Unterversorgung und zur Feststellung eines maximalen Volumenstroms, ab dem keine Verbesserung der Kühlwirkung mehr auftritt, eingesetzt werden. Hierzu werden die Düsenart, mit der der KSS dem Schleifspalt zugeführt wird, deren Position und die Höhe des Volumenstroms variiert.

Während der Fertigung können die Temperaturen im Schleifspalt ständig mit dem vorgestellten IR-Messsystem beobachtet werden und es kann bei Auftreten kritischer Grenztemperaturen reagiert werden, bevor Schleifbrand entsteht.

Grenztemperaturen für Werkstoffe definieren

Diese kritischen Grenztemperaturen werden für definierte Materialien und Geometrien im Labor definiert, indem beispielsweise bei einem Außenrund-Schleifprozess die Zustellung während einer einzigen Umdrehung des Werkstücks kontinuierlich gesteigert wird. Somit werden die temperaturbeeinflussenden Faktoren, wie die Prozesskräfte und die Kontaktlänge, stetig gesteigert und thermische Schädigungen, wie Zugeigenspannungen, Risse oder gar Gefügeumwandlungen, hervorgerufen.

Auf diese Weise kann eine Werkstückschädigung an einem bestimmten Winkel der Werkstückteilung einer bestimmten Temperatur zugeordnet werden. Temperaturen, ab denen Schädigungen auftreten, werden als kritische Grenztemperatur definiert, die nicht überschritten werden dürfen.

Durch die Kenntnis der Temperatur in der Kontaktzone zwischen Werkstück und Schleifscheibe kann das KSS-Zufuhrsystem gezielt optimiert und das Auftreten von Randzonenschädigungen verhindert werden.

Mit der vorgestellten IR-Temperaturmessung steht ein Messsystem zur qualitativen Bewertung der Kühlwirkung in der Kontaktzone zur Verfügung. An einer Weiterentwicklung für den industriellen Einsatz wird gearbeitet. In naher Zukunft sollen mit diesem System Untersuchungen zur Optimierung des KSS-Einsatzes und -Zufuhrsystems in der Praxis vorgenommen werden.

Das geschilderte Projekt Infrared Radiation Thermal Monitored Grinding (IR-Thermogrind) wurde vom Bundesministerium für Wirtschaft und Arbeit im Rahmen des Proinno-Programms gefördert. In dem Projekt wurden das IR-Messsystem entwickelt und die Untersuchungen durchgeführt.

Literatur

[1] Brinksmeier, E.; Bohling, A.: Beherrschung des Kühlschmierstoffeinsatzes beim Schleifen. In: 7. Seminar Moderne Schleiftechnologie und Feinstbearbeitung, S. 3-1 bis 3-26, Stuttgart, 2008

[2] Wittmann, M.: Bedarfsgerechte Kühlschmierung beim Schleifen. Dr.-Ing.- Dissertation, Universität Bremen. Forschungsberichte aus der Stiftung Institut für Werkstofftechnik, Band 36, Aachen: Shaker Verlag 2007

Prof. Dr.-Ing.Ekkard Brinksmeier ist Direktor der Hauptabteilung Fertigungstechnik der Stiftung Institut für Werkstofftechnik (IWT) in Bremen. Dipl.-Wi.-Ing. Antje Wilkens ist wissenschaftliche Mitarbeiterin am IWT. Dr. Erhard Giese ist Geschäftsführer der FOS Messtechnik GmbH in Schacht-Audorf

Frank Fladerer | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/200408/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

nachricht 3D-Druck im Mittelstand etablieren
20.06.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften