Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leistung steigern beim Schleifen keramischer Werkstoffe

01.10.2009
Das Planumfangsschleifen von Siliziumnitrid- und Aluminiumoxidkeramik mit Diamantschleifscheiben unter Schleiföl bietet noch hohes Entwicklungspotenzial. Ziel von Untersuchungen ist es deshalb, die Leistung des Schleifprozesses unter Berücksichtigung der werkstoffspezifischen Besonderheiten zu steigern.

Der Einsatz von Hochleistungskeramiken als Schneidstoffe ist in bestimmten Anwendungsbereichen eine Alternative zu konventionellen Stahl- oder Hartmetallwerkstoffen. Insbesondere in der Hochleistungszerspanung können dadurch höhere Zeitspanvolumina aufgrund gesteigerter Schnitt- und Vorschubgeschwindigkeiten erreicht und somit die Produktionsleistung beachtlich gesteigert werden. Trotz der außerordentlichen Eigenschaften der keramischen Werkstoffe, wie der hohen Warmhärte, Verschleiß- und Korrosionsbeständigkeit, wird allerdings häufig auf deren Einsatz aufgrund der sehr hohen Herstellungs- und Nachbearbeitungskosten verzichtet [1].

Eigenschaften keramischer Werkstoffe beim Schleifen berücksichtigen

Die spezifischen Eigenschaften der keramischen Werkstoffe, wie hohe Härte, Sprödigkeit und Thermoschockempfindlichkeit, erfordern während der schleifenden Bearbeitung eine besondere Berücksichtigung. Im Gegensatz zu den Hartmetallen sind diese wegen ihrer Sprödigkeit nur in geringem Maße in der Lage, auftretende Spannungsspitzen durch plastische Verformungen abzubauen, deshalb orientiert sich die Bearbeitung meist an dieser fehlenden plastischen Verformbarkeit [2 und 3].

Für die schleifende Bearbeitung von keramischen Werkstoffen haben sich bedingt durch ihre hohe Härte kunstharzgebundene Diamantschleifscheiben bewährt. Die Verwendung von Kunstharzbindungen soll zu vergleichsweise geringen Prozesskräften, einem guten Verschleißverhalten der Schleifscheibe sowie hohen Oberflächengüten und Formgenauigkeiten am Werkstück führen. Allerdings treten aufgrund der geringen Wärmeleitfähigkeit der kunstharzgebundenen Schleifscheiben hohe Temperaturen im Schleifprozess auf [4].

Eine keramische Bindung dagegen soll beim Schleifen einen kühleren Schliff aufgrund ihrer Porenräume ermöglichen; sie weist in der Regel eine höhere Wirkhärte auf. Das Ziel der Untersuchungen ist es, eine Leistungssteigerung des Schleifprozesses unter Berücksichtigung der werkstoffspezifischen Besonderheiten der keramischen Werkstoffe zu erreichen.

Für die Untersuchungen wurden eine kunstharz- und eine keramisch gebundene Diamantschleifscheibe mit der Korngröße D 64 und der Konzentration C 100 im Planumfangsschleifverfahren unter Schleiföl im Gegenlauf eingesetzt. Es wurde untersucht, inwieweit sich eine Variation des Bindungstyps auf die Prozesskräfte und die Oberflächengüte des jeweiligen keramischen Werkstoffes auswirkt.

Aufgrund der einfachen Form wurden Wendeschneidplatten SNGN 120408 aus Siliziumnitrid- (Si3N4) und Aluminiumoxidkeramik (Al2O3 + ZrO2) als zu bearbeitende Werkstücke für diese grundlegenden Untersuchungen ausgewählt, um eine einfache Prozesskinematik und dadurch einen reproduzierbaren Anschliff zu gewähren.

Vorschubgeschwindigkeit beeinflusst Prozesskräfte

Während der Versuchsreihe mit variierten Vorschubgeschwindigkeiten wurden die Schleifnormal- und -tangentialkräfte mit einem Dreikomponenten-Dynamometer aufgenommen, um Informationen über die Werkzeugbelastung zu erhalten.

Allgemein ist zu erkennen, dass eine Steigerung der Vorschubgeschwindigkeit mit einer Erhöhung der Prozesskräfte einhergeht. Bei einer Steigerung der Vorschubgeschwindigkeit vergrößert sich automatisch auch das bezogene Zeitspanvolumen, weil die Schleifscheibe das gleiche Werkstoffvolumen in kürzerer Zeit abzutragen hat. Dieses führt zu einer höheren mechanischen Beanspruchung der Schleifscheibe und somit zu erhöhten Prozesskräften.

Bei der keramischen Bindung dagegen treten deutlich geringere Prozesskräfte als bei der Kunstharzbindung auf. Das liegt an den unterschiedlichen Verschleißmechanismen der verwendeten Bindungsmaterialien. Die keramische Bindung zeichnet sich im Gegensatz zur Kunstharzbindung durch eine hohe Porosität aus, die das Zusetzen des Belages sowie der Porenräume fördert und damit das Ausbrechen des spröden Bindungsmateriales beschleunigt, wodurch neue, scharfe Diamantkörner in den Eingriff kommen, die geringere Prozesskräfte bedingen [5].

Der Vergleich der bezogenen Schleifkräfte für die Schleifbearbeitung der unterschiedlichen keramischen Werkstoffe verdeutlicht, dass beim Schleifen von Siliziumnitridkeramik höhere Kräfte als beim Schleifen von Aluminiumoxidkeramik auftreten. Die Unterschiede zwischen den Werten der bezogenen Schleifkräfte für den jeweiligen keramischen Werkstoff sind mit den verschiedenen Werkstoffgefügen und damit einhergehend mit den physikalischen Eigenschaften zu erklären.

Prozessergebnis anhand der Werkstückqualität beurteilt

Das Prozessergebnis wurde anhand der Werkstückqualität beurteilt. Das erfolgte quantitativ mit den Rauheitskenngrößen, der gemittelten Rautiefe und dem arithmetischen Mittenrauwert. Die leicht steigende Tendenz der gemessenen Rauheitskenngrößen bei zunehmender Vorschubgeschwindigkeit korrespondiert mit der der bezogenen Schleifkräfte beim Schleifen der Siliziumnitridkeramik.

Bei der Aluminiumoxidkeramik dagegen sind die Rauheitskenngrößen bei den zwei Vorschubgeschwindigkeiten relativ konstant, allerdings fallen sie höher aus als bei der Siliziumnitridkeramik. Dieses ist auf die unterschiedlichen Werkstoffeigenschaften und Materialabtragsmechanismen zurückzuführen. Bei keramischen Werkstoffen kann sich der Materialabtrag durch überwiegend plastische Verformungen bis hin zum reinen Sprödbruch vollziehen [3]. Die durch den Einsatz der keramisch gebundenen Schleifscheibe erzeugte schlechtere Oberflächenqualität liegt in den zuvor beschriebenen unterschiedlichen Verschleißmechanismen der verwendeten Bindungsmaterialien begründet.

Kunstharzgebundene Schleifscheibe erzeugt bessere Oberflächenqualität

Die Untersuchungen zeigen, dass die kunstharzgebundene Diamantschleifscheibe mit einer Korngröße von D 64 und einer Konzentration von C 100 geringere Rauheitskenngrößen und somit eine bessere Oberflächenqualität erzeugt. Die Schleifscheibe mit der keramischen Bindung dagegen verursacht geringere Schleifkräfte, wodurch das thermomechanische Belastungskollektiv auf das Werkstück deutlich reduziert werden kann.

Literatur

[1] Uhlmann, E., und S.-E. Holl: Entwicklungen beim Schleifen keramischer Werkstoffe. In: Moderne Schleiftechnologie. Neue Entwicklungen und zukünftige Trends aus der Praxis und Forschung. Villingen-Schwenningen 1998, S. 1-28.

[2] Tönshoff, H. K., und andere: Grinding of a ceramic steel compound. Production Engineering 1/2003, S. 1-4.

[3] Friemuth, Th., und andere: Bearbeitung keramischer Werkstoffe. Tribologie und Schmierungstechnik 1/2006, S. 29-36.

[4] Schneider, M.: Auswirkungen thermomechanischer Vorgänge beim Werkzeugschleifen. Dissertation Institut für Spanende Fertigung der Universität Dortmund 1999.

[5] Denkena, B., M. Reichstein und A. Karyazin: Schleifbearbeitung von Verbundwerkstoffen aus Stahl und Keramik mit Diamantwerkzeugen. Industrie Diamanten Rundschau 4/2005, S. 332-338.

Prof. Dr.-Ing. Dirk Biermann ist Leiter des Instituts für Spanende Fertigung (ISF) der Technischen Universität Dortmund; Dipl.-Ing. Dipl.-Wirtsch.-Ing. Evelyn Würz ist wissenschaftliche Mitarbeiterin am Institut.

Dirk Biermann und Evelyn Würz | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/232198/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Das Auto lernt vorauszudenken
28.06.2017 | Technische Universität Wien

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten