Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Konstanter Gläser-Transport

01.10.2009
Mehr Wertschöpfung mit Kettenfördersystem in der Brillenglasfertigung. Ophthonix, Hersteller hochauflösender Brillengläser, nutzt die Vorteile des Rexroth-Kettenfördersystems VarioFlow S: kürzere Fertigungszeiten, höhere Qualität, weniger Stellfläche.

Ophthonix, Hersteller für Hochpräzisionsbrillengläser mit Sitz in Vista/Kalifornien, hat einen neuen Technologieprozess zur Fertigung von Brillengläsern eingeführt, die eine präzise Korrektur von Sehschwächen ermöglichen. Für das Werk, das dem steigenden Produktionsumfang leicht angepasst werden kann, fiel die Wahl auf das Kettenfördersystem VarioFlow S und den Aluminium-Profilbaukasten von Rexroth. Ziel war die Umsetzung eines schlanken, vollautomatischen, stetig fördernden Zugsystems, das alle Facetten der vorhandenen Fertigungsausstattung miteinander verbindet.

Jetzt ist das Ophthonix-Labor mit einem modularen Fördersystem ausgestattet, das die Brillengläser zu verschiedenen Arbeitsplätzen transportiert. Eine ständige Bedienung und Überwachung durch Mitarbeiter ist nicht mehr erforderlich.

Die so genannten iZon-Brillengläser von Ophthonix werden auf der Basis eines einzigartigen "optischen Fingerabdrucks" des Patienten, dem iPrint, individuell gefertigt. Sie verbessern die Sicht deshalb erheblich, weil sie auch Sehschwächen beheben, die durch mikroskopisch kleine Unregelmäßigkeiten, so genannte Aberrationen höherer Ordnung, verursacht werden. Die iZon-Brillengläser bestehen aus drei Schichten und erfordern eine Hochqualitätsfertigung.

Als der Hersteller sich zur Produktion entschloss, gab es in den USA noch kein Labor, das diesen Hochpräzisionsprozess ausführen konnte. Deshalb hat das Unternehmen ein ganz neues Labor eingerichtet, das sowohl den gegenwärtigen als auch den künftigen Fertigungsbedarf berücksichtigt. Erforderlich war deshalb ein modulares Transportsystem, das sich ohne Unterbrechung des Betriebs Schritt für Schritt an die jeweils erwarteten Produktionssteigerungen anpassen lässt. Weil Laborgrundfläche teuer ist, war auch der gesamte dreidimensionale Raum des mehr als 900 Quadratmeter großen Labors für die Endbearbeitung auszunutzen.

In Zusammenarbeit mit Rexroth wurde schließlich das modulare Kettenfördersystem VarioFlow S samt erforderlicher Elemente aus dem Aluminium-Profilbaukasten zusammengestellt. Die Umsetzung geriet zur Herausforderung: Es war ein Transportsystem zu installieren, das mit seinen Abmessungen in das Labor passt. Zugleich waren auch verschiedene Komponenten einer bereits vorhandenen Ausstattung zu integrieren.

Automatische Zuführung

Hauptaufgabe des VarioFlow S ist es, die Transportschalen mit den Brillengläsern verschiedenen Bearbeitungsstationen innerhalb des Optiklabors zuzuführen. Das vollautomatische System muss außerdem den leichten Zugang zu verschiedenen Maschinen auf der gesamten Grundfläche ermöglichen - immerhin knifflig, da sich der Förderkettenein- und -ausgang an manchen Stationen auf unterschiedlichen Höhen befindet.

Zur Vorbereitung für die Fertigung der Brillengläser werden die Patientendaten zusammengestellt und im Computersystem erfasst. In einem Bereitstellungsbereich wird dann jedem Rezept ein entsprechender Barcode zugeordnet und zur späteren Identifizierung an der zugehörigen Transportschale angebracht. Anschließend lädt das zuständige Personal die vorbereiteten Transportschalen in einen Entstapler, der bis zu zehn Schalen aufnehmen kann. Dann werden die Transportschalen automatisch einzeln nacheinander der Fertigungslinie zugeführt. Während des Fertigungsprozesses gelangen die Brillengläser zu einem automatischen Folienapplikator, wo sie eine Schutzfolie erhalten.

Das Transportsystem bringt die Gläser schließlich zu einer automatischen Blockmaschine, die die unbearbeiteten Gläser gemäß individueller Verschreibung auf dem Werkzeugblock positioniert und durch eine Metalllegierung miteinander verbindet.

An dieser Stelle des Produktionsablaufs hatte Ophthonix eine spezielle Anforderung an das VarioFlow S:

Um Verwindungen der Gläser während des Fertigungsprozesses zu verhindern, müssen sie eine 25- bis 45-minütige Kühlphase durchlaufen. Das wird mit der stufenlos einstellbaren Geschwindigkeitsregelung des Kettenfördersystems erreicht. Auf dieser Strecke der Fertigungslinie, die Platz sparend über dem Arbeitsbereich angeordnet ist, liegt die Geschwindigkeit nur bei etwa 90 Zentimeter pro Minute - gegenüber knapp 14 Meter pro Minute auf allen anderen Strecken.

Auch die optimale Ausnutzung des begrenzten Raums ist hier ein wesentlicher Aspekt:

Dem Kühlprozess ist ein vertikaler Puffer aus dem Aluminiumprofil-Baukasten von Rexroth vorgeschaltet. Dieser Puffer befördert die Transportschalen mit den Gläsern aus dem ebenerdigen Bereich in eine darüber angeordnete Ebene, so dass eine weitere Station zum Stapeln und Entstapeln der Schalen verzichtbar ist.

Nach dem Abkühlen erhalten die Gläser die grundlegende Krümmung laut Verschreibung. Anschließend folgt die Polierstation und abschließende Oberflächenbearbeitung.

Nach dem Entblocken und einer Reinigung gelangen die Gläser in einen Reinraum, in dem sie die von Ophthonix entwickelten, spezifischen Schutzschichten erhalten. Bei der daran anschließenden Abschlussbearbeitung werden die Brillengläser erneut aufgeblockt und an den Kanten bearbeitet, poliert und mit Bohrungen versehen. Danach gelangen die Transportschalen zu den Mitarbeitern an den Stationen für Montage, Prüfung und Verpackung.

Kurvenreiche Strecke

Die patentierte Kurventechnik war für die Anordnung des Transportsystems besonders wichtig, da die Fertigungslinie insgesamt 40 horizontale Kurven mit Winkeln von 45, 90 und 180 Grad hat. Mit einem herkömmlichen Transportsystem wäre die Umsetzung einer solch komplexen Anordnung schwierig gewesen. Die UltraCurve-Technik von Rexroth für horizontale Kurven sorgt für minimale Reibung bei maximaler Fertigungskapazität und bietet auch Staufähigkeit in Kurven. Bei einer Anordnung dieser Art verringert sich die Anzahl der erforderlichen Antriebe aufgrund der Kurven, so dass die Anschaffungskosten und der Gesamtenergieverbrauch niedriger ausfallen.

Ophthonix | handling
Weitere Informationen:
http://www.handling.de/xist4c/web/Konstanter-Glaeser-Transport_id_882__dId_464440_.htm

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie