Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung eines Videoprojektionsverfahrens mit direkt schreibenden Lichtbündel

22.11.2002


Mit seinen fast 62 Jahren zählt Christhard Deter zu den ältesten Promovenden der Universität Chemnitz - und zugleich auch zu den erfolgreichsten. Denn bei der Verteidigung seiner Arbeit erreichte er am 21. November 2002 "summa cum laude" - die höchste Note auf der Promotions-Skala. Der Inhaber von mehr als 55 Patenten ist kein Freund von flotten Sprüchen und leichtfertig in die Welt gesetzten Visionen. Seine Erfindung des Laserfernsehens wurde deshalb auch erst dann publik, als man das Prinzip auch zeigen konnte. Das Laserfernsehen kommt ohne Bildschirm aus, die Bilder sind gestochen scharf und lassen sich in nahezu beliebiger Größe an die Wand projizieren. Für seine Entwicklungsarbeit erhielt Deter bereits 1997 vom damaligen Bundespräsidenten Roman Herzog den erstmalig vergebenen "Deutschen Zukunftspreis".


Wen wundert es, dass sich auch Deters Dissertation mit dem Thema "Entwicklung eines Videoprojektionsverfahrens mit direkt schreibenden Lichtbündel" befasst. Den eigentlichen Anstoß dazu gab jedoch ein anderer: Prof. Dr. Wolfram Dötzel, Inhaber der Professur Mikrosystem- und Gerätetechnik an der TU Chemnitz. Der Universitätsprofessor fragte vor etwa drei Jahren seinen thüringischen Forschungspartner Deter, ob er nicht zu den Forschungsarbeiten auf dem Gebiet des Laserfernsehens eine wissenschaftliche Arbeit anfertigen wolle. "Und mit sanftem Druck führte er mich zum Ziel", lacht Deter heute. Lediglich drei Konsultationen habe er bei seinem "Doktor-Vater" benötigt.

Doch was ist nun das Prinzip der Laserbildprojektion? Sie beruht grundsätzlich auf der Ablenkung eines Laser-Strahls. Als Lichtquelle dient eine Lasereinheit mit drei Wellenlängen für die Farben Rot, Grün und Blau. Der Laserstrahl baut das Bild Zeile für Zeile auf. Das geschieht mittels eines Polygonspiegels mit 25 Flächen, der mit über 1.000 Umdrehungen pro Sekunde rotiert. Die Vertikalablenkung erfolgt durch einen weiteren Scanner. Über eine Optik ist die Größe des Bildes variabel einstellbar. Im Gegensatz zur Fernsehbildröhre generiert der Laser direkt mit Lichtimpulsen. Dabei bewegt sich der Laserpunkt mit einer Geschwindigkeit von rund 90 Kilometern pro Sekunde über die Projektionsfläche. Das Bild entsteht erst im menschlichen Gehirn, das die extrem schnell erzeugten Einzelpunkte zu einem Gesamteindruck zusammensetzt. Ein weiterer Vorteil gegenüber anderen Verfahren ist, dass der Laserstrahl ohne Justierung stets ein scharfes Bild erzeugt.


Die Einsatzmöglichkeiten der Laser-Display-Technologie gehen über das heutige Fernsehen weit hinaus. Laser-Displays können beispielsweise als Großdisplays eingesetzt werden. Im ZULIP - dem Zeiss Universal LaserImage Projektor - zeichnet ein einzelner Laserstrahl ein Bild, das in seiner Farbigkeit und Brillanz unübertroffen ist. Er kann digitale Dias, Videos und computergenerierte Bilder aller Art projizieren. Zu bestaunen ist ZULIP bereits seit Sommer 2002 in Wien und ab 2003 auch in Hamburg. Weitere Anwendungen ergeben sich in einem Planetarium, das neben der klassischen Planetariumstechnik den Sternenhimmel und sonstige Himmelskörper über sechs Laserprojektoren in die Halbkugel des Planetariums zeichnet. Ein erstes System wird in Peking aufgebaut, für weitere Systeme gibt es bereits Interessenten. Last but not least findet die Laser-Display-Technologie Anwendung in der zivilen und militärischen Simulationstechnik.

Für spätere Anwendungen mit preiswerteren Komponenten arbeiten zahlreiche Forschungseinrichtungen an der Miniaturisierung der Laser- und Scannereinheit. Relativ preiswerte Spiegel haben bereits Wissenschaftler um Prof. Dr. Thomas Geßner und Prof. Dr. Wolfram Dötzel vom Sonderforschungsbereich "Mikromechanische Sensor- und Aktorarrays" der TU Chemnitz entwickelt. Das "Scannerarray", so das Fachwort, besteht aus zahlreichen jeweils drei mal drei Millimeter großen, mit Metall bedampften Spiegeln aus Silizium, die quadratisch angeordnet sind. Diese Mikrospiegel sind an zwei Stellen beweglich gelagert und können durch das Anlegen einer Spannung ausgelenkt werden. Dabei ist jeder Spiegel einzeln ansteuerbar. Doch bis zu deren Einsatz im Laserfernseher der Zukunft werden sicher noch einige Jahre vergehen.

Weitere Informationen:

Christhard Deter
Telefon: 0365-43590
E-Mail: christhard.deter@jenoptik.com

Dipl.-Ing. Mario Steinebach | idw

Weitere Nachrichten aus der Kategorie Kommunikation Medien:

nachricht Auf Videokacheln basierendes DASH Streaming für Virtuelle Realität mit HEVC vom Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Virtuell und 360°: die Zukunft bewegter Bilder
04.10.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Kommunikation Medien >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auf die richtige Behandlung kommt es an

19.01.2017 | Seminare Workshops

Grundlagen der Akustik, Virtuelle Akustik, Lärmminderung, Fahrzeugakustik, Psychoakustik, Produkt Sound Design und Messtechnik

19.01.2017 | Seminare Workshops

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie