Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interdisziplinäre Forschungsgruppe entwickelt weltweit erstes individuelles Unterkieferimplantat

31.08.2012
Eine interdisziplinäre Forschungsgruppe unter aktiver Beteiligung von Ingenieurwissenschaftlern der Fakultät Maschinenwesen der TU Dresden hat nach dreijähriger Arbeit das weltweit erste komplexe Verfahren entwickelt, das die Herstellung eines individuellen Unterkieferimplantates ermöglicht.

Im März 2012 konnte der erste Patient mit dem neu entwickelten Implantat in der Klinik für Mund-, Kiefer- und Gesichtschirurgie des Universitätsklinikums Dresden erfolgreich versorgt werden.


Virtuelles 3D-Modell eines Unterkieferknochens mit eingepasstem Implantat. Die äußere Schale des Implantates folgt der Kontur des entfernten Kieferbereiches. Die Herstellung des Implantates erfolgt mit dem schichtweise arbeitenden Verfahren „LaserCusing“. TUD/KTC

Bisher wurden Knochendefekte im Mund-, Kiefer- und Gesichtsbereich mit konfektionierten Rekonstruktionsplatten behandelt. Dies führte in etwa 45 Prozent der Fälle nach kurzer Zeit zu funktionellen und ästhetischen Komplikationen. Weil die Standardplatten nicht passgenau auf dem Restknochen angebracht werden konnten, wurde die darüber liegende Schleimhaut nach einer Operation stark strapaziert.

Häufig entstanden Entzündungen und die Platten lockerten sich. Zusätzlich kam es zum Bruch der Rekonstruktionsplatte, weil Implantat und Knochen unterschiedliche Festigkeiten aufwiesen. Die Folgen waren umfangreiche funktionelle und ästhetisch – physiognomische Defizite.

Einer Forschungsgruppe aus Ingenieuren der Fakultät Maschinenwesen und Medizinern des Universitätsklinikums Carl Gustav Carus der TU Dresden aus den Bereichen der Klinik für Mund-, Kiefer- und Gesichtschirurgie (Frau OÄ Dr. Dr. Jutta Markwardt) und der Poliklinik für Zahnärztliche Prothetik (Prof. Dr. Bernd Reitemeier) sowie Ingenieuren der Hofmann & Engel Produktentwicklung GmbH ist es nun erstmals gelungen, ein individuelles Unterkieferimplantat aus Titan zu entwickeln.

„Weil das neue Unterkieferimplantat die gleiche Festigkeit und Geometrie wie die angrenzenden Knochen aufweist, bricht das Material nicht mehr an den Verbindungsstellen, was dem Patienten ästhetische Defizite nach der Operation und weitere medizinische Eingriffe erspart. Zudem erfolgt die Befestigung am Restkiefer nun gewebeschonend. Das garantiert eine optimale Heilung“, so Professor Ralph Stelzer, Inhaber der Professur für Konstruktionstechnik/CAD an der Fakultät Maschinenwesen der TU Dresden.

Um die Biokompatibilität zu gewährleisten, verwendete die interdisziplinäre Forschungsgruppe reines Titan. Dies wird in einem komplexen Fertigungsverfahren erst aufgeschmolzen und dann schichtweise aufgebaut. Die äußere Schale des Implantats entspricht dann mit einer Wandstärke von nur 0,3 Millimetern der Festigkeit des entfernten Kieferknochens. Damit das Titanimplantat nicht zu schwer oder temperaturempfindlich wird, ist es als Schalenkonstruktion gefertigt. Im Moment arbeiten die Forscher der Fakultät Maschinenwesen daran, den Innenraum des Implantates mit einer filigranen Struktur zu füllen, die das Knochenwachstum anregen soll.

Vom Computermodell zum individuellen Implantat
Als Ausgangspunkt für die Konstruktion dienen Daten aus dem CT eines erkrankten Patienten. Die individuelle Datenaufbereitung erfolgt als virtuelles 3D-Modell mit einer in der Arbeitsgruppe Reverse Engineering der TU Dresden dafür eigens entwickelten Software. Auf Grundlage des digitalen Modells wird das Unterkieferimplantat individuell konstruiert, angepasst und bei der Firma Hoffmann & Engel gefertigt. „Die Schwierigkeit bestand darin, die unterschiedlichen Disziplinen von der medizinischen Diagnostik, über die Konstruktion, Fertigung, bis zur OP-Planung und Patientenversorgung informationstechnisch und logistisch miteinander zu verknüpfen. Diese interdisziplinäre Zusammenarbeit ermöglicht es nun erstmals, ein jedem Patienten einzeln angepasstes Implantat in etwa 32 Arbeitsstunden herzustellen“, so die Leiterin des ingenieurwissenschaftlichen Teilprojektes Dr.-Ing. Christine Schöne. Die Softwarelösung, die im Rahmen des Projektes entstanden ist, wird aktuell auch für andere Problemstellungen der OP-Planung angepasst wie z. B. bei Zahnimplantationen.
Das Forschungsprojekt „Funktionsoptimierte Strukturen von individuellen Implantaten zur Behandlung von Knochendefekten“ wurde mit rund zwei Mio. Euro von der Sächsischen Aufbaubank gefördert. Davon erhielt das Teilprojekt der Ingenieurwissenschaftler zur „Erarbeitung effektiver Methoden und Softwarelösungen zur aufwandsarmen Modellierung von individuellen Implantatstrukturen“ 470.000 Euro Fördersumme. Das Teilprojekt lief vom 01.04. 2009 bis 30.06.2012.

Informationen für Journalisten
Prof. Ralph Stelzer, Dr.-Ing. habil. Christine Schöne, Professur für Konstruktionstechnik/CAD, Fakultät Maschinenwesen, TU Dresden, Tel. 0351 463-33775, 0351 463-32798, ralph.stelzer@tu-dresden.de, christine.schoene@tu-dresden.de
OÄ Dr. Dr. Jutta Markwardt, Klinik für Mund-, Kiefer- und Gesichtschirurgie
Universitätsklinikum Carl Gustav Carus an der TU Dresden
Tel. 0351 458-3382, jutta.markwardt@uniklinikum-dresden.de

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.uniklinikum-dresden.de
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise