Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wilder Weizen zeigt Muskeln

11.05.2007
Getreidekörner bohren sich mit Schwimmbewegungen in die Erde

Ein wildes Weizenkorn hat alles, was der Pflanzennachwuchs braucht - sogar das Werkzeug, um sich in die Erde zu bohren. Seine beiden Grannen treiben es in die Erde: In der trockenen Luft des Tages biegen sich die Borsten nach außen. Nachts, vom Tau angefeuchtet, strecken sie sich dagegen. Über mehrere Tage schieben diese Bewegungen, die Schwimmstößen eines Frosches ähneln, das Korn in die Erde. Das haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung jetzt herausgefunden. Dabei sorgen feine, widerhakenartige Silicahärchen auf der Außenseite der Grannen dafür, dass sich die Saat nur abwärts bewegen kann. Über einen ähnlichen Mechanismus kann ein Wechsel der Luftfeuchtigkeit auch Mikromaschinen antreiben. (Science, 11. May 2007)


Eine Bohrmaschine für die Saat: I Der Samen und ein Teil der Grannen stecken im Boden (Der Pfeil deutet auf ein Silicahärchen) II Wird es nachts feuchter, richten sich die Grannen auf und schieben so das Korn tiefer in die Erde. Die Silicahärchen verhindern eine Bewegung nach oben. III In der trockenen Luft des nächsten Tages biegen sich die Grannen erneut auseinander. So spannt sich der Bohrer, der den Samen in der nächsten Nacht noch tiefer in den Boden treibt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Die Grannen des Wilden Weizens sind Steuer und Motor in einem: Sie steuern ein reifes Korn mit der Spitze abwärts zu Boden, indem sie die Saat im Fallen richtig ausbalancieren. Steckt das Korn dann in der Erde, verwandeln es die beiden Borsten in einen Bohrer und treiben das Korn in die Krume. Die Kraft dazu gibt ihnen alleine die Luft, die an den natürlichen Standorten des Wilden Weizens tagsüber trocken und nachts feucht ist. Der Weizen, den Landwirte anbauen, beherrscht den Trick dagegen nicht mehr.

Während des trockenen Tags krümmen sich die beiden Grannen nach außen, in der feuchten Nacht biegen sie sich dagegen zueinander. Denn die Kappe der Granne - die Seite also, die sie ihrer Partnergranne zuwenden - reagiert anders auf Feuchtigkeit als ihre Außenseite. Das liegt an der Konstruktion ihrer Zellulosefasern, die Biologen Fibrillen nennen: In der Kappe sind die Zellulosefibrillen ausschließlich parallel zur Granne angeordnet. Im unteren Teil des Grannenrückens sind sie dagegen beliebig orientiert. Das macht die Kappe nicht nur zehnmal steifer als den Rücken. Die Anordnung macht die Granne auch zu einer einfachen Bohrmaschine. Wird es nämlich feucht, schwellen alle Fibrillen nur in ihrer Breite an. Das heißt aber: Die Grannenkappe quillt nur seitlich auf, da dort alle Fasern in Längsrichtung verlaufen. Der Grannenrücken streckt sich dagegen, da einige seiner Fasern auch senkrecht zu der Borste liegen. Und mit ihm richtet sich die ganze Granne auf.

"Der Mechanismus ähnelt dem beim Öffnen von Tannenzapfen", sagt Rivka Elbaum, eine beteiligte Wissenschaftlerin und Humboldt-Stipendiatin am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. "Der mittlere Bereich des Grannenrückens funktioniert wie ein Muskel, der die Grannen beugt und streckt." Der Muskel alleine reicht aber noch nicht, damit sich die Körner in die Erde bohren können. Das geht nur dank der feinen Silica-, also Glashärchen, auf ihrer Außenseite. Die Härchen wirken wie Widerhaken, was auch deutlich zu spüren ist, wenn wir Grannen durch unsere Hände gleiten lassen: Vom Korn weg gestrichen laufen sie geschmeidig über die Haut, zum Korn hin ist der Widerstand der Härchen deutlich zu spüren.

Diese Silicahärchen verhindern, dass sich die Grannen aus der Erde schieben, wenn sich die Borsten nachts strecken. Sie können sich nur in die Erde bewegen und schieben das Korn so Nacht für Nacht ein bisschen tiefer in die Erde. Das fanden die Wissenschaftler heraus, indem sie ein Weizenkorn und den unteren Teil seiner Grannen in ein Tuch einschlugen. In dem Stoff verhakten sich die Silicahärchen. Nun erhöhten und senkten die Forscher die Luftfeuchtigkeit abwechselnd. Tatsächlich rutschte das Korn mit jedem Feuchtigkeitszyklus ein bisschen tiefer in das Tuch.

"Der wilde Weizen nutzt diesen Mechanismus, um sich zu verbreiten", sagt Prof. Peter Fratzl, Direktor am Potsdamer Max-Planck-Institut und Leiter der Forschergruppe. Denn die Grannen treiben den Samen mit ihren Schwimmbewegungen nicht nur in die Erde, sondern bewegen ihn auch über die Erde. "Wir haben nach dem Mechanismus der Grannen bereits einfache Maschinen und Muskeln gebaut, die Veränderungen der Luftfeuchtigkeit in Bewegung umsetzen", sagt Fratzl. Er sieht darin auch einen möglichen Beitrag, erneuerbare Energien zu nutzen: "Mich fasziniert die Möglichkeit, die Energie der Sonne auf diese Weise in Bewegung umzusetzen."

Originalveröffentlichung:

Rivka Elbaum, Liron Zaltzman, Ingo Burgert, Peter Fratzl
The Role of Wheat Awns
Science, 11. May 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Grannenrücken Luftfeuchtigkeit Muskel Silicahärchen Weizen

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine