Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wilder Weizen zeigt Muskeln

11.05.2007
Getreidekörner bohren sich mit Schwimmbewegungen in die Erde

Ein wildes Weizenkorn hat alles, was der Pflanzennachwuchs braucht - sogar das Werkzeug, um sich in die Erde zu bohren. Seine beiden Grannen treiben es in die Erde: In der trockenen Luft des Tages biegen sich die Borsten nach außen. Nachts, vom Tau angefeuchtet, strecken sie sich dagegen. Über mehrere Tage schieben diese Bewegungen, die Schwimmstößen eines Frosches ähneln, das Korn in die Erde. Das haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung jetzt herausgefunden. Dabei sorgen feine, widerhakenartige Silicahärchen auf der Außenseite der Grannen dafür, dass sich die Saat nur abwärts bewegen kann. Über einen ähnlichen Mechanismus kann ein Wechsel der Luftfeuchtigkeit auch Mikromaschinen antreiben. (Science, 11. May 2007)


Eine Bohrmaschine für die Saat: I Der Samen und ein Teil der Grannen stecken im Boden (Der Pfeil deutet auf ein Silicahärchen) II Wird es nachts feuchter, richten sich die Grannen auf und schieben so das Korn tiefer in die Erde. Die Silicahärchen verhindern eine Bewegung nach oben. III In der trockenen Luft des nächsten Tages biegen sich die Grannen erneut auseinander. So spannt sich der Bohrer, der den Samen in der nächsten Nacht noch tiefer in den Boden treibt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Die Grannen des Wilden Weizens sind Steuer und Motor in einem: Sie steuern ein reifes Korn mit der Spitze abwärts zu Boden, indem sie die Saat im Fallen richtig ausbalancieren. Steckt das Korn dann in der Erde, verwandeln es die beiden Borsten in einen Bohrer und treiben das Korn in die Krume. Die Kraft dazu gibt ihnen alleine die Luft, die an den natürlichen Standorten des Wilden Weizens tagsüber trocken und nachts feucht ist. Der Weizen, den Landwirte anbauen, beherrscht den Trick dagegen nicht mehr.

Während des trockenen Tags krümmen sich die beiden Grannen nach außen, in der feuchten Nacht biegen sie sich dagegen zueinander. Denn die Kappe der Granne - die Seite also, die sie ihrer Partnergranne zuwenden - reagiert anders auf Feuchtigkeit als ihre Außenseite. Das liegt an der Konstruktion ihrer Zellulosefasern, die Biologen Fibrillen nennen: In der Kappe sind die Zellulosefibrillen ausschließlich parallel zur Granne angeordnet. Im unteren Teil des Grannenrückens sind sie dagegen beliebig orientiert. Das macht die Kappe nicht nur zehnmal steifer als den Rücken. Die Anordnung macht die Granne auch zu einer einfachen Bohrmaschine. Wird es nämlich feucht, schwellen alle Fibrillen nur in ihrer Breite an. Das heißt aber: Die Grannenkappe quillt nur seitlich auf, da dort alle Fasern in Längsrichtung verlaufen. Der Grannenrücken streckt sich dagegen, da einige seiner Fasern auch senkrecht zu der Borste liegen. Und mit ihm richtet sich die ganze Granne auf.

"Der Mechanismus ähnelt dem beim Öffnen von Tannenzapfen", sagt Rivka Elbaum, eine beteiligte Wissenschaftlerin und Humboldt-Stipendiatin am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. "Der mittlere Bereich des Grannenrückens funktioniert wie ein Muskel, der die Grannen beugt und streckt." Der Muskel alleine reicht aber noch nicht, damit sich die Körner in die Erde bohren können. Das geht nur dank der feinen Silica-, also Glashärchen, auf ihrer Außenseite. Die Härchen wirken wie Widerhaken, was auch deutlich zu spüren ist, wenn wir Grannen durch unsere Hände gleiten lassen: Vom Korn weg gestrichen laufen sie geschmeidig über die Haut, zum Korn hin ist der Widerstand der Härchen deutlich zu spüren.

Diese Silicahärchen verhindern, dass sich die Grannen aus der Erde schieben, wenn sich die Borsten nachts strecken. Sie können sich nur in die Erde bewegen und schieben das Korn so Nacht für Nacht ein bisschen tiefer in die Erde. Das fanden die Wissenschaftler heraus, indem sie ein Weizenkorn und den unteren Teil seiner Grannen in ein Tuch einschlugen. In dem Stoff verhakten sich die Silicahärchen. Nun erhöhten und senkten die Forscher die Luftfeuchtigkeit abwechselnd. Tatsächlich rutschte das Korn mit jedem Feuchtigkeitszyklus ein bisschen tiefer in das Tuch.

"Der wilde Weizen nutzt diesen Mechanismus, um sich zu verbreiten", sagt Prof. Peter Fratzl, Direktor am Potsdamer Max-Planck-Institut und Leiter der Forschergruppe. Denn die Grannen treiben den Samen mit ihren Schwimmbewegungen nicht nur in die Erde, sondern bewegen ihn auch über die Erde. "Wir haben nach dem Mechanismus der Grannen bereits einfache Maschinen und Muskeln gebaut, die Veränderungen der Luftfeuchtigkeit in Bewegung umsetzen", sagt Fratzl. Er sieht darin auch einen möglichen Beitrag, erneuerbare Energien zu nutzen: "Mich fasziniert die Möglichkeit, die Energie der Sonne auf diese Weise in Bewegung umzusetzen."

Originalveröffentlichung:

Rivka Elbaum, Liron Zaltzman, Ingo Burgert, Peter Fratzl
The Role of Wheat Awns
Science, 11. May 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Grannenrücken Luftfeuchtigkeit Muskel Silicahärchen Weizen

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Multidisziplinäre Studie regt neue Strategie zur Medikamentenentwicklung an
15.01.2018 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Interaktionen zwischen einfachen molekularen Mechanismen führen zu komplexen Infektionsdynamiken
09.01.2018 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten