Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchgewirbelt: Pulverbeschichtung im Plasma ist Grundlage für Neue Materialien

05.03.2002


Projektmitarbeiter Dr. Brüser kontrolliert die Abscheidung der Fasern


Plasma in der Wirbelschichtanlage


Farben, die wie Seifenblasen in der Sonne schillern oder High-Tech-Werkstoffe zum günstigen Preis: Deutschlands nordöstlichstes Leibnizinstitut forscht an Neuen Materialien. In einer Plasma-Wirbelschichtanlage verändern Wissenschaftler des Institutes für Niedertemperatur-Plasmaphysik (INP) die Oberflächen neuartiger Grafitfasern für die Produktion leistungsfähiger Verbundwerkstoffe. In kleinsten Mengen erfolgreich erprobt, soll die Plasmabehandlung von Pulvern und Fasern nun mit größerem Materialumsatz funktionieren. Das könnte der Werkstoffindustrie eine ganz neue Dimension eröffnen.

Winzig kleine Grafitfasern schwirren durcheinander, das Plasma wird gezündet und leuchtet rötlich. Am Institut für Niedertemperatur-Plasmaphysik startet ein Experiment in der Wirbelschichtanlage zur Bearbeitung von Pulvern. Im Plasma hoch angeregte Sauerstoffmoleküle verändern die Oberfläche der Fasern. "Wir arbeiten daran, eine Vision zu verwirklichen, die vor allem für Kunststoffverarbeiter attraktiv ist: die Funktionalisierung von Kohlefasern," sagt Projektmitarbeiter Dr. Volker Brüser. Gebraucht werden diese für außergewöhnlich stabile und trotzdem sehr leichte faserverstärkte Kunststoffe. Solche Verbundwerkstoffe werden in der Raumfahrt, im Flugzeugbau oder für besonders edle Sportgeräte schon heute verwendet, wobei die Produktion der Kohlefasern aufwändig und teuer ist. "Wir arbeiten aber mit neuartigen Kohlefasern, sog. Vapour Grown Carbon Fibre, (VGCF)," erklärt Dr. Brüser. "Die können in hoher Qualität so günstig produziert werden, dass man erstmals an die Massenproduktion hochwertiger Verbundwerkstoffe denken kann."

Dazu muss aber ein geeignetes Verfahren zur Vorbehandlung der Fasern zur Verfügung stehen. "Die Kohlefasern müssen vor ihrer Weiterverarbeitung zu Verbundwerkstoffen durch die Anlagerung von Sauerstoff chemisch aktiviert werden, weil sie sich sonst nicht richtig mit dem Kunststoff verbinden," erklärt Dr. Brüser. Übertrage man die üblichen Verfahren zur Oxidation der Kohlefasern auf VGCF, führe dies nicht immer zu befriedigenden Ergebnissen, mitunter sogar zu einer Beschädigung der Fasern. Gute Ergebnisse brachte die Plasmabehandlung von Pulvern und Fasern im Labormaßstab. Größtes Problem war zunächst, die Oberflächen aller Teilchen gleichmäßig dem Plasma auszusetzen. Im Labor wurde gerührt, gerüttelt und geschüttelt, bis sich die Wirbelschichtanlage als geeignet erwies. Gas und Pulver werden besonders gut durchmischt und die Behandlungszeit auf wenige Sekunden verkürzt. Um eine Wirbelschicht zu erzeugen, wird durch ein Sieb jenes Gas in den Behandlungsraum geblasen, das auf der Pulveroberfläche die gewünschten Effekte hervorzurufen imstande ist. Das kann einfach Luft sein, wie im Fall der Grafitfasern. Wenn nun die Anströmung des Gases die Gewichtskraft der winzigen Körnchen ausgleicht, entsteht eine Wirbelschicht. Dann wird das Plasma gezündet, d.h. das Gas wird im Mikrowellen- oder Hochfrequenzfeld angeregt und so die Oberflächenreaktion in Gang gesetzt: Im Feld beschleunigte Elektronen spalten Moleküle und lagern deren chemisch aktive Bruchstücke an die Faseroberfläche an.

Dieses Verfahren von Laborgröße auf industrielle Maßstäbe zu übertragen ist eine Herausforderung an die Plasmatechnik. Große Pulvermengen müssen gleichmäßig und schnell behandelt werden. Dazu wurde die Wirbelschichtanlage des INP so eingerichtet, dass bei laufendem Betrieb kontinuierlich Grafitfasern zu- und abgeführt werden können. Die Größe der Anlage ist bereits so bemessen, dass eine Industrieanlage nach dem gleichen Prinzip aufgebaut sein könnte. Noch bis 2003 können die Wissenschaftler mit dieser Pilotanlage Erfahrungen sammeln, so lange läuft ein Forschungsprojekt, das vom Bundesministerium für Bildung und Forschung finanziert wird.

Dann sollen die Erkenntnisse auch dazu genutzt werden, weitere Anwendungsmöglichkeiten für plasmabehandelte Pulver oder Fasern zu erschließen. Denkbar ist vieles: Man gibt Kunststoffen oder anderen Materialien als Pulver oder Granulat bestimmte Oberflächenfunktionen, die sie nach ihrer Verarbeitung zu einem Formteil behalten. Das ist besonders vorteilhaft, wenn großformatige Teile veredelt werden sollen, z.B. Schiffsrümpfe. Bisher müssen die Plasmaanlagen an die Größe des Formteils angepasst werden, um die Oberflächen der Teile beispielsweise für eine spätere Lackierung vorzubereiten. Oder in der Pharmaindustrie: Die Geschwindigkeit, mit der Tabletten ihre medizinischen Wirkstoffe abgeben, könnte gesteuert werden, indem man den pulverförmigen Wirkstoff mit einer wasserabweisenden Schicht umhüllt. Farbhersteller könnten mittels plasmabehandelter Zusätze oder Farbpartikel völlig neue Effekte erzielen, wie eine Farbe, die wie eine Seifenblase im Sonnenlicht schillert. Die Wirbelschichtanlage des INP ist ein wichtiger Schritt in Richtung dieser neuen Dimension von Plasmaanwendungen.

Anke Wagner | idw

Weitere Berichte zu: Faser Grafitfaser Kohlefaser Plasma Verbundwerkstoff Wirbelschichtanlage

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

nachricht SeaArt-Projekt startet mit Feldversuchen an Nord- und Ostsee
18.11.2016 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie