Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Partikeldetektor als Diagnostiker

06.12.2001


Das BMBF fördert Forschungsvorhaben des Ulmer Laserinstituts

Das Bundesministerium für Bildung und Forschung (BMBF) hatte 2001 zum dritten Mal den mit 4,0 Mio. DM dotierten Innovationswettbewerb zur Förderung der Medizintechnik ausgeschrieben. Das Förderungsziel besteht darin, die Durchführung von »Schlüsselexperimenten« zu unterstützen, »die zum Nachweis der Machbarkeit einer neuen Technik oder eines neuen Verfahrens der Medizin erforderlich sind«. Die einzelne Zuwendung überschreitet in der Regel nicht DM 500.000. Da ein konkretes Produkt aus den Arbeiten hervorgehen soll, ist die Kooperation mit einem Unternehmen der gewerblichen Wirtschaft Bedingung, das die weitere Finanzierung bis zur Produktreife übernimmt. Am 22. November wurden 9 Projekte (aus 123 Bewerbungen) ausgezeichnet. Darunter ist ein Vorhaben von Prof. Dr. Rudolf Steiner, Direktor des Instituts für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm (ILM), zur Erkennung von Krankheitserregern und genetischen Informationen. Es wird in den nächsten zwei Jahren mit DM 500.000 gefördert.

Steiners Ansatz beruht auf der Idee, die laserbasierte Partikeldetektion zum Beispiel für diagnostische Zwecke, für gentechnische Untersuchungen, für die Lebensmittelkontrolle u.ä. fruchtbar zu machen. Die mit ihm kooperierende Firma Klotz Analytische Meßtechnik, Bad Liebenzell, stellt lasergestützte Meßapparaturen zur Detektion von Partikeln zwischen 2 und 150 Mikrometern her. Mit der Fähigkeit zur Registrierung nur 2% betragender Größenunterschiede ist deren Auflösungsfähigkeit hoch. Die Partikel können aus Kunststoff, Glas, Metall oder anderen Stoffen bestehen. Eingesetzt werden die Geräte beispielsweise zur Kontrolle von Trinkwasser, zur Überprüfung der Reinheit von Flüssigkeiten und Lösungen in der chemischen und pharmazeutischen Industrie usw. Nun will Steiner dieser Technologie weitere Anwendungsfelder erschließen, so etwa die gezielte synchrone Suche nach bestimmten Krankheiten oder deren Erregern im diagnostischen Prozeß.

Hierfür sollen Partikel unterschiedlicher Größe mit jeweils spezifischen Erkennungssequenzen - Antikörpern, Antigenen - für verschiedene Krankheiten beschichtet werden. Dazu ein Beispiel: die 100-Mikrometer-Partikel werden mit einem Marker für Typhus, die 50-Mikrometer-Partikel für HIV, die 10-Mikrometer-Partikel für Malaria gekoppelt. In einer Blut- oder Plasma-Probe binden, sofern vorhanden, Antikörper bzw. Eiweiße, die die jeweilige Krankheit bzw. ihren Erreger anzeigen, an die »komplementären« Partikel, das heißt an die Träger der spezifischen Erkennungssequenz. In einem zweiten Schritt werden Antikörper der gesuchten Arten mit Fluoreszenzfarbstoff markiert und in das Medium eingeführt. Diese markierten Antikörper docken an die Tandems, die sich aus Partikeln und unmarkierten Antikörpern formiert haben, und nur an diese Tandems an, das bedeutet: »ledige« Partikel werden nicht markiert. Der Detektor des Lasermeßgerätes schließlich prüft - in einem einmaligen Durchlauf - sowohl die Größe der vorbeiströmenden Partikel als auch das Vorliegen einer Fluoreszenz. Wenn also in unserem Beispiel eine fluoreszierende 10-Mikrometer-Partikel registriert wird, ist das ein Hinweis auf eine Malaria-Infektion. Werden in dieser Kategorie keine Fluoreszenzen festgestellt, befinden sich in der untersuchten Blutprobe keine Malaria-spezifischen Antikörper. Dieses jetzt in der Entwicklung begriffene Meßgerät soll imstande sein, 200.000 Partikel pro Milliliter Testflüssigkeit zu detegieren.

Fluoreszenzverfahren, die bislang schon eingesetzt werden, beruhen auf denselben biochemischen Mechanismen. Jedoch benutzen sie als Trägermatrix starre Plastikoberflächen, zum Beispiel Mikrotiterplatten oder auch komplexe Chips. Die multiple und zugleich hochpräzise Partikelmessung rationalisiert die Nachweisverfahren erheblich. Zwischengeschaltete Wasch- und Pipettier-Schritte sind nicht erforderlich. Die Tests, die in einem einzigen Meßdurchlauf erfolgen können, sind beliebig kombinierbar. Das Verfahren wird sich auch zur Bestimmung von Genexpressionen eignen. Dazu können Partikel mit definierten DNA-Abschnitten (Oligonukleotiden) auf die Suche nach ihren Komplementen geschickt oder auch spezifische Eiweiß-Exprimate, für die bestimmte genetische Konfigurationen codieren, ausfindig gemacht werden. Darüber hinaus sind weitere Anwendungsfelder des Detektionssystems denkbar, so etwa der Nachweis von Schadstoffen in Lebensmittel. Dem Anwender soll die Möglichkeit gegeben werden, sowohl spezifisch beschichtete Partikel zu erwerben als auch freie Partikel nach Maßgabe seiner Untersuchungsziele selbst zu konfigurieren. Vorgesehen ist, das Meßgerät im Verlauf von etwa zwei Jahren zur Marktreife zu entwickeln. Die bevorstehenden Forschungsarbeiten sind auf die simultane und fehlerfreie Detektion der Partikelgröße und des Fluoreszenzsignals sowie auf die Differentiationsfähigkeit des Gerätes gerichtet, das in der Lage sein muß, die Fluoreszenzsignale frei schwimmender Marker von denjenigen zu unterscheiden, die von den Konglomeraten aus Partikel, Antikörper und Marker ausgehen.

Peter Pietschmann | idw

Weitere Berichte zu: Antikörper Detektion Marker Meßgerät Partikel

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Placebo-Effekt hilft nach Herzoperationen
11.01.2017 | Philipps-Universität Marburg

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie