Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genetischer Fingerabdruck entlarvt mikrobielle Täter auf beschädigtem Papier

16.01.2006


Erstmals können nun mittels modernster DNA-Analyse auch Papier zersetzende Mikroorganismen identifiziert werden. Möglich wird dies durch ein molekulares Verfahren, das mit Unterstützung des Wissenschaftsfonds FWF an der Universität Wien für pilzbefallene Dokumente entwickelt wurde. Dabei lassen sich anhand des als ITS1 bezeichneten DNA-Abschnitts Pilzarten eindeutig bestimmen und künftig gezielt Maßnahmen zum Erhalt historischer Dokumente setzen.


Der Zahn der Zeit, der an historisch wertvollen Schriftstücken nagt, lässt sich im Allgemeinen leicht benennen: Mikroorganismen wie etwa Pilze setzen sich bei günstigen Bedingungen fest und zersetzen langsam das Dokument. Gilt es diese Pilze genau zu identifizieren, sind herkömmliche Methoden jedoch aufwändig und ungenau. Diese benötigen eine relativ große Menge an Probenmaterial sowie die Vermehrung und anschließende mikroskopische Bestimmung der Pilzprobe: ein insgesamt langwieriger und damit fehleranfälliger Prozess. Ein Team um Dr. Guadalupe Pinar am Department für Medizinische und Pharmazeutische Chemie, Universität Wien, entwickelte nun ein Verfahren, mit dem sich Pilzarten anhand ihrer DNA schnell und eindeutig klassifizieren lassen.

Multiple Mutationen


Dabei macht sich Dr. Pinar eine Besonderheit im Erbgut vieler Pilzarten zu Nutze: Ein als ITS1 bezeichneter DNA-Abschnitt weist von Art zu Art enorme Unterschiede in der Sequenz der DNA-Basenpaare auf. Zum Ursprung dieser Unterscheidungsmerkmale erläutert Dr. Pinar: "Der ITS1-Abschnitt unterliegt häufig spontanen Mutationen. Da dieser DNA-Abschnitt jedoch keine erkennbare Funktion im Pilzgenom aufweist und nicht unmittelbar zur Überlebensfähigkeit einer Pilzart beiträgt, sind diese Spontanmutationen nicht weiter nachteilig. Jede Pilz-Art hat damit allerdings ihren typischen ITS1-Abschnitt und somit eine ganz individuelle Kennung."

Damit diese Sequenzunterschiede analysiert werden können, werden aber - für molekularbiologische Verhältnisse - große Mengen an DNA benötigt. Die kann man zwar dadurch gewinnen, dass große Mengen des Ausgangsmaterials verwendet werden - bei historischen Dokumenten verbietet sich diese Möglichkeit jedoch.

Dem ForscherInnen-Team gelang es nun mittels modernster Methoden, die benötigte DNA in ausreichenden Mengen herzustellen. Dazu erläutert die Diplom-Biologin Astrid Michaelsen, Teampartnerin von Dr. Pinar: "Wir verwenden die Polymerase Chain-Reaktion, ein hoch effizientes Verfahren, um einzelne DNA-Abschnitte zu vervielfältigen. So können wir ITS1-Fragmente in großer Menge und in hoher Reinheit herstellen, selbst wenn wir nur sehr kleine Mengen an Pilzmaterial für die DNA-Extraktion zur Verfügung haben. Das erlaubt die bereits in Mitleidenschaft gezogenen Dokumente größtmöglich zu schonen."

Spannende Ergebnisse

Werden genügend ITS1-Fragmente erzeugt, kann die eigentliche DNA-Analyse erfolgen: Bei der als Denaturing Gradient Gel Electrophoresis bezeichneten Analyse werden die ITS1-Fragmente in ein unter elektrischer Spannung stehendes Gel gegeben. Je nach Mutationen legen die ITS1-Proben in diesem Spannungsfeld unterschiedlich weite Wegstrecken zurück, die für jede Pilzart charakteristisch sind. Schon ein Austausch von einem Basenpaar resultiert in Unterschieden, die ein exaktes Bestimmen der Pilzart zulassen.

Die nun entwickelte Methode bietet tatsächlich noch einen weiteren Vorteil gegenüber traditionellen Methoden: Selbst nicht mehr lebensfähige Pilze können als Ausgangsmaterial dienen. Dazu Dipl.-Biol. Michaelsen: "Gerade auf Papier ist zu beobachten, dass Pilze nach etwa 20 Jahren nicht mehr aktiv sind. Die DNA, das Ausgangsmaterial für unsere Methode, kann aber auch aus solchem Material isoliert werden. Es können also mit unserer Methode auch Dokumentenproben untersucht werden, auf denen der Pilz zwar inaktiv ist, aber der Zersetzungsprozess sich trotzdem fortsetzt. Traditionelle Methoden scheitern hier, da sie auf die Vermehrung lebensfähiger Pilze angewiesen sind."

Die Ergebnisse dieses vom Wissenschaftsfonds FWF unterstützten Projekts erlauben es nun, je nach Pilzart individuell geeignete Restaurierungs- und Pflegemaßnahmen in Zusammenarbeit mit dem "Istituto Centrale per la Patologia del Libro" in Rom zu entwickeln, das auch die historischen Proben zur Verfügung stellt. So kann der Erhalt wichtiger Kulturgüter für zukünftige Generationen optimal gesichert werden.

Wissenschaftlicher Kontakt:
Dipl.-Biol. Astrid Michaelsen
Universität Wien
Dept. for Medicinal Chemistry
Althanstraße 14
A-1090 Wien
T +43 / 4277 / 55116
E astrid.michaelsen@univie.ac.at

Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40 - 36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Mag. Daniel Kainz | PR&D
Weitere Informationen:
http://www.univie.ac.at
http://www.fwf.ac.at

Weitere Berichte zu: Ausgangsmaterial DNA FWF ITS1-Fragment Pilzart Wissenschaftsfond

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie