Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ForNano: Daumennagelgroßes Analyselabor in greifbarer Nähe

05.07.2002


Ein ganzes Analyselabor auf einem daumennagelgroßen Chip: dieses ehrgeizige Ziel strebt der neue Forschungsverbund "Miniaturisierte Analyseverfahren durch Nanotechnologie in Biochemie, Chemie und Physik" ForNano in den nächsten drei Jahren an. Neun Arbeitsgruppen aus den beiden Münchener Universitäten und der Universität Würzburg arbeiten zusammen mit Industriepartnern an neuen Laboranalyseverfahren. Der Bayerischen Forschungsstiftung ist dieses zukunftsträchtige Projekt 3 Mio Euro wert.

Anwendungen der miniaturisierten Analyseverfahren finden sich vor allem in der Medizin, der Pharmazie, der Biotechnologie und der Umweltanalytik. Die neuen Techniken werden nicht nur schneller sein als herkömmliche Nachweismethoden, sie sind auch empfindlicher und gehen sparsamer mit teuren Reagenzien um.
ForNano hat zwei Forschungsschwerpunkte: Zum einen werden Chips entwickelt, die verschiedene Analysemethoden auf der Fläche eines Daumennagels integrieren und dabei den Transport und die Kombination von Reagenzien auf kleinstem Raum ermöglichen. Zum andern werden vollkommen neue, auf kleinstem Raum funktionsfähige Nachweismethoden erforscht. Beispielsweise wird in einem Projekt das Eindringen eines einzelnen Virus in eine Zelle mit eleganten optischen Verfahren verfolgt (vgl. Science 294, 1929, 2001). Prof. Jörg P. Kotthaus, Sprecher von ForNano, verspricht sich viel von diesem Projekt: "Für die Medizin ist das ein Riesenschritt vorwärts, denn bisher wurde ein Virus ja nur an seinen Folgen erkannt. Wirklich zu sehen, wie er in die Zelle eindringt, wird ganz neue Möglichkeiten der Bekämpfung eröffnen."

Mit im Boot sind auch eine ganze Reihe industrieller Partner: Advalytix AG, garching analytics GmbH, nanoplus GmbH, Nanotype GmbH, Nanoscape AG, NIMBUS GmbH. Sie steuern nicht nur Geld und Sachmittel bei, sondern arbeiten auch zusammen mit den interdisziplinären Teams aus Physikern, Chemikern, Medizinern und Materialwissenschaftlern.


Kontakte:

Prof. Jörg P. Kotthaus
Sprecher
LMU München
Geschwister-Scholl-Platz 1
80539 München
Tel (089) 21 80 - 37 38 
Jorg.kotthaus@physik.uni-muenchen.de


Dr. Monika Kaempfe
Koordination
LMU München
Schellingstraße 4
80799 München
Tel (089) 21 80 - 57 91 
monika.kaempfe@physik.uni-muenchen.de

Dipl.-Chem.Christine Kortenbruck | idw
Weitere Informationen:
http://www.abayfor.de/

Weitere Berichte zu: Analyselabor ForNano Reagenz Virus Zelle

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research