Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Software erkennt Stadien von Prostatakrebs

28.03.2012
Siemens-Forscher haben eine Software darauf „trainiert", verschiedene Krebsstadien von Prostatazellen zu unterscheiden.

Sie fütterten das Bildanalysesystem mit vielen Beispielen medizinischer Bilder. Fernziel ist ein Expertensystem, das pathologische Diagnosen schnell, kostengünstig sowie zuverlässig erstellt und damit menschliche Experten unterstützt. Bislang hat die Software des Status eines Prototyps und ist nicht kommerziell verfügbar.


Ärzte brauchen jahrelanges Training, um die verschiedenen Krebsstadien anhand von Unterschieden in der Zellstruktur zu identifizieren. Objektträger mit den hauchdünnen Gewebeproben aus Prostatabiopsien, bei denen ein Verdacht auf krankhafte Veränderungen vorliegt, können nicht beliebig lange gelagert werden. Daher wäre eine Art digitaler pathologischer Gewebescanner sehr nützlich, der tausende Objektträger pro Stunde analysieren und dokumentieren kann. Diese Daten könnten jederzeit reproduziert und von mehreren Nutzern gleichzeitig verwendet werden.

Bei der globalen Siemens-Forschung Corporate Technology in Princeton erarbeiten die Experten das Grundlagenwissen für solche Geräte und nutzen dafür Techniken des maschinellen Lernens. Anhand von Proben, die vorher von Pathologen in jeweils eines von vier Prostatakrebs-Stadien eingeteilt wurden, versucht ihr System, typische Merkmale wie Zellstruktur und -anordnung zu identifizieren. Das System wird bei 100 klassifizierten Proben durch 90 „trainiert" und bei den restlichen zehn getestet. Das wird solange wiederholt, bis das System „gelernt" hat, aus seinen Erfahrungen die richtigen Schlüsse zu ziehen und Bildinhalte zu interpretieren.

Die Forscher machten dabei eine interessante Entdeckung: Das System „lernte" nicht nur wie erwartet, wie verschiedene Zellen aussehen, sondern es fand sozusagen als Nebeneffekt diejenigen zugrundeliegenden Klassifizierungsmerkmale heraus, die auch Spezialisten heranziehen. Um das Krebsstadium anhand der typischen schleifenförmigen Anordnungen von Krebszellen eindeutig zu erkennen, reicht es nämlich aus, die Länge der Schleifen und die Anzahl der enthaltenen Zellen zu betrachten.

Die Forscher planen, die digitale Pathologie zukünftig als Bindeglied zwischen molekularen Testverfahren und der Welt der physikalischen und anatomischen Abbildungen zu nutzen, indem sie Biopsienadeln mit Positionssensoren ausstatten. So würde jede Gewebeprobe eine präzise dreidimensionale Adresse erhalten und jedem Bildausschnitt könnte das richtige Krebsstadium zugeordnet werden. (IN 2012.03.7)

Disclaimer: Diese Veröffentlichung enthält in die Zukunft gerichtete Aussagen, für deren Eintreten Siemens in keiner Weise garantieren kann. Die Software ist im Stadium eines Prototypen und nicht kommerziell verfügbar.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Weitere Informationen:
http://www.siemens.de/innovation

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Störungsfreie Kommunikation für die Fabriken von morgen
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie