Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

parMERASA: Software-Parallelisierung für Mehrkernprozessoren

17.10.2011
Der Augsburger Informatiker Theo Ungerer koordiniert ein 3,3 Mio. Euro schweres EU-Projekt mit Forschungs- und Industrie-Partnern aus Spanien, Frankreich, England, Tschechien und Deutschland. Ziel ist eine Leistungssteigerung industrieller Echtzeitprogramme für sparsamere Autos und sicherere Flugzeuge.

Autos und Flugzeuge energiesparsamer, wirtschaftlicher und zugleich sicherer zu machen - das ist die Leitperspektive des EU-Projekts "Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability“ (parMERASA), das - auf drei Jahre angelegte und von der EU mit 3,3 Millionen Euro gefördert - am 1. Oktober 2011 offiziell startete. Koordiniert wird dieses Projekt von dem Augsburger Informatiker Prof. Dr. Theo Ungerer (Lehrstuhl für Systemnahe Informatik und Kommunikationssysteme an der Universität Augsburg).


Nicht nur auf die Automobiltechnik und auf die Flugzeugelektronik sind die parMERASA-Forschungen ausgerichtet, sondern z. B. auch auf Bohrgeräte, wie sie die am Projekt beteiligte Schrobenhausener BAUER Maschinen GmbH herstellt.
Foto: BAUER Maschinen GmbH

Wie kann man Autos, Flugzeuge und generell Maschinen sichererer, wirtschaftlicher und energiesparsamer machen? Fahrerassistenzsysteme in Autos z. B. könnten im Prinzip durch eine Steigerung der Leistungsfähigkeit ihrer elektronischen Steuereinheit noch sicherer werden. Und auch der Kraftstoffverbrauch von Motoren könnte eigentlich mit Hilfe von Steuereinheiten höherer Leistungsfähigkeit weiter optimiert werden. Das Problem: Für all diese Systeme gilt, dass die Ausführung ihrer Aufgaben in einem extrem kurzen und insbesondere in einem festen Zeitintervall gewährleistet sein muss. Man spricht hier von "harten Echtzeitanforderungen“, denen diese Systeme genügen müssen.

Die Software und die Softwarewerkzeuge für solche Anforderungen sind heute auf sequentiell ausgeführte Programme zugeschnitten. Eine erhebliche Leistungssteigerung wäre jedoch möglich, wenn diese Programme parallelisiert und auf einem geeigneten Mehrkernprozessor ausgeführt werden könnten. Mehrkernprozessoren zeichnen sich dadurch aus, dass mehrere Prozessoren - Kerne genannt - auf einem Chip integriert werden. Auf Mehrkernprozessoren können aufwändigere Regelungsalgorithmen eingesetzt werden, die zur Erfüllung der genannten Echtzeitanforderungen beitragen können, sofern die Ausführung der Programme im vorgegebenen Zeitintervall weiterhin garantiert bleibt.

Entwicklung paralleler Programme, die harten Echtzeitanforderungen genügen

Der Anspruch des EU-Projekts parMERASA ist es, gemeinsam mit Anwenderfirmen aus den Bereichen der Flugzeugelektronik, der Automobiltechnologie und der Baumaschinen industrielle Echtzeitprogramme auf ihre mögliche Leistungssteigerung durch geeignete Parallelisierung zu untersuchen. Im Mittelpunkt steht dabei die Frage: Wie kommt man von einem sequentiellen zu einem parallelen Echtzeitprogramm, das trotz der gleichzeitigen Ausführung der parallelen Kontrollfäden auf einem Mehrkernprozessor noch Echtzeitanforderungen genügt? Um eine Antwort auf diese Frage zu finden, muss ein entsprechender Softwareentwurfsprozess entwickelt werden, müssen geeignete parallele Softwarestrukturen gefunden, Analysewerkzeuge und Systemsoftware bereitgestellt und Hardware-Strukturen auf ihre Eignung untersucht werden.

Von MERASA zu parMERASA

An eine Umsetzung dieser ehrgeizigen Ziele des parMERASA-Projekts wäre nicht zu denken, wenn nicht auf den Ergebnissen des mit weitgehend denselben Partnern erfolgreich bearbeiteten Vorgängerprojekts MERASA aufgebaut werden könnte. Dieses Vorgängerprojekt, das von der EU von 2007 bis 2010 mit 2,1 Millionen Euro gefördert und ebenfalls von Prof. Ungerer koordiniert wurde, konzentrierte sich darauf, echtzeitfähige Mehrkernprozessoren mit zwei bis acht Kernen zu entwickeln, also in einer Größenordnung, in der Kerne heute bereits in Allzweckprozessoren für PCs und Server eingesetzt werden. Im parMERASA-Nachfolgeprojekt sollen nun Mehrkernprozessoren mit bis zu 64 Kernen und mit anderen, neuen Verbindungsstrukturen untersucht werden. Zugleich wird der Schwerpunk der Forschungs- und Entwicklungsarbeit von der Hardwareentwicklung in Richtung Anwenderprogramme und deren Parallelisierung sowie auf die Unterstützung durch Systemsoftware verlegt.

Von den Firmen Honeywell International s.r.o. in Brünn (Tschechien), DENSO Automotive Deutschland GmbH in München und BAUER Maschinen GmbH in Schrobenhausen wird mit diesen Zielsetzungen und in Kooperation mit den Universitäten Augsburg und Dortmund und mit dem Barcelona Supercomputing Center die Parallelisierung von industriellen Echtzeitprogrammen in den Bereichen der Flugzeugelektronik, der Automobiltechnik und der Baumaschinen untersucht, und es werden prototypische parallele Programme entwickelt, die dann auf einem simulierten 64 Kern-Prozessor ausgeführt werden. Von den beteiligten Augsburger Informatikern wird zudem am Entwurf einer entsprechenden echtzeitfähigen Betriebssystem-Software gearbeitet.

Um Echtzeitfähigkeit gewährleisten zu können, benötigt man Software-Werkzeuge, die für ein Programm diejenige Verarbeitungszeit errechnen können, die im schlimmsten Fall auftreten kann. Solche Software-Werkzeuge werden im parMERASA-Verbund von Forschern der Universität Paul Sabatier in Toulouse und von der englischen Firma Rapita Systems Ltd. bereitgestellt werden. "Nicht zuletzt aufgrund unserer bisherigen erfolgreichen Zusammenarbeit unter dem Dach des Vorgänger-Projekts MERASA sind wir überzeugt davon, dass es uns in den kommenden drei Jahren gelingen wird, auf der Basis eines wesentlich vertieften Verständnisses der Parallelisierung von Echtzeitprogrammen für den Automobil-, den Flugzeug- und den Maschinenbau Software-Werkzeuge zu entwickeln, die passgenau auf die für diese Bereiche spezifischen Anforderungen der Programmanalyse harter Echtzeitanwendungen zugeschnitten sein werden", so der parMERASA-Koordinator Ungerer.

Von Anfang an mit im Boot: Anwender und Prozessorhersteller

Um einen optimalen Transfer- und Anwendungsprozess sicherzustellen sind neben den drei kooperierenden Universitäten und dem Barcelona Supercomputing Center nicht nur vier Industriepartner - in Form dreier Anwender und eines einschlägigen Software-Werkzeugherstellers - auf der Liste der an parMERASA Mitwirkenden.Vielmehr sind über ein Industrial Advisory Board auch Experten des Prozessorherstellers Infineon Technologies (München und Bristol) sowie der Anwenderfirmen Airbus S.A.S. (Toulouse), European Space Agency ESA (Noordwijk, Niederlande), BMW Group (München), Elektrobit Automotive GmbH (München, Erlangen) und Mecel AB (Schweden) in das Projekt mit eingebunden. "Diese Integration renommierter Firmen aus verschiedenen europäischen Staaten dokumentiert", wie Ungerer betont, "unseren mit parMERASA verbundenen Anspruch, in den Schlüsselsparten der Fahrzeug-, Flugzeug- und Maschinenbauindustrie einen wichtigen Beitrag zur zukünftigen Wettbewerbsfähigkeit Europas zu leisten."

Ansprechpartner:

Prof. Dr. Theo Ungerer
Institut für Informatik der Universität Augsburg
Universitätsstraße 6a
86159 Augsburg,
Telefon 0821/598-2350
theo.ungerer@informatik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.parmerasa.eu/
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie