Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Sensor für Mini-Satelliten

24.03.2015

Moderne Satelliten werden immer leistungsfähiger und kleiner. Gleiches gilt für alle Komponenten, die auf ihnen zum Einsatz kommen. Wissenschaftler der Universität Würzburg arbeiten jetzt an einem Sensor, der Pico- und Nanosatelliten Informationen über ihre Lage im Weltraum liefert.

Das Prinzip ist alt: Schon die Wikinger haben sich bei ihren Fahrten über das Meer an Sternbildern orientiert und so den Kurs bestimmt. An Sternbildern orientiert sich auch ein Sensor, der heute Satelliten Informationen über ihre Lage im Weltraum liefert.


Hakan Kayal (r.) und Oleksii Balagurin mit einem Modell ihres Star-Trackers STELLA, der Ende dieses Jahres in den Orbit reisen soll.

Foto: Gunnar Bartsch

„Star-Tracker“ heißen diese Geräte im Fachjargon. „Ein Star-Tracker ist im Prinzip eine Kamera, kombiniert mit einem Computer und einem Speicher“, erklärt Hakan Kayal, Professor für Raumfahrttechnik an der Universität Würzburg.

Mit der Kamera nimmt der Sensor ein Foto vom Sternenhimmel auf; dieses Bild vergleicht er mit einem Katalog der Europäischen Raumfahrtagentur ESA. Dort sind insgesamt 6.800 Sterne gespeichert und nach ihren Helligkeitswerten klassifiziert. Anhand dieser Daten und der eigenen Aufnahme ist der Sensorrechner in der Lage, die Ausrichtung des Satelliten auf seiner Bahn um die Erde exakt zu bestimmten.

325.000 Euro Drittmittel eingeworben

In einem neuen Forschungsprojekt arbeiten Hakan Kayal und sein wissenschaftlicher Mitarbeiter Oleksii Balagurin jetzt daran, neuartige Soft- und Hardware-Technologien für Miniatur-Sternsensoren zu entwickeln und zu testen. Zum Einsatz sollen diese Sternsensoren auf sogenannten Pico- und Nanosatelliten kommen – also auf Satelliten, die nur wenige Kilogramm schwer und dementsprechend klein sind. Das Vorhaben wird vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages mit rund 325.000 Euro finanziert (Förderkennzeichen 50RM1522).

„Wo ist das Problem?“, könnte sich der Laie bei diesem Vorhaben fragen. Kleine Kameras, große Speicher und schnelle Rechner tragen heutzutage viele Menschen in Form von Smartphones in ihren Hosentaschen. Was auf der Erde funktioniert, lässt sich allerdings nicht mal eben auf die Situation in einer Erdumlaufbahn übertragen. „Wir stehen vor einem Multiparameter-Problem“, erklärt Oleksii Balagurin. Soll heißen: Bei der Entwicklung ihres Sternsensoren müssen die Wissenschaftler zahlreiche Faktoren berücksichtigen, die sich wechselseitig beeinflussen.

Viele Faktoren beeinflussen sich gegenseitig

Weit oben auf der Liste dieser Parameter stehen die Größe und das Gewicht des Star-Trackers. Wenn der Satellit selbst nur so groß wie ein Fußball ist, darf der Sensor nicht das Format einer Spiegelreflexkamera besitzen. Wichtig ist auch der Energieverbrauch. Schließlich hilft der beste Sensor nichts, wenn seine Batterie nach zwei Wochen leer ist, die Mission aber zwei bis drei Jahre dauern soll. Die Empfindlichkeit und Genauigkeit der Kamera, die Größe der Datenbank, die Datenrate und der Aufbau der Schnittstelle sind weitere Parameter, die beim Bau des Sensors bedacht werden müssen.

Was die Angelegenheit zusätzlich verkompliziert: Kein Satellit gleicht dem anderen. Dementsprechend ist es auch nicht möglich, einen Standardsensor zu entwickeln, der auf verschiedenen Modellen zum Einsatz kommen kann. Das führt bei der Entwicklung zu einem schrittweisen Annäherungsprozess an die optimale Kombination von Eigenschaften.

„Wenn man beispielsweise mit der Optik anfängt, legt man damit die Grenzmagnitude fest – also die Helligkeit, die Sterne mindestens haben müssen, damit sie von der Kamera gesehen werden“, erklärt Balagurin. Ist der Wert der Grenzmagnitude zu hoch, findet die Kamera nur wenige Sterne und somit möglicherweise kein geeignetes Muster, das sie mit dem ESA-Katalog vergleichen könnte. „Dann müssten wir entscheiden, ob wir die Empfindlichkeit erhöhen oder die Optik so verändern, dass wir ein größeres Aufnahmefeld erhalten“, sagt der Projektleiter.

Ein Algorithmus für die optimale Kombination

Und so ziehe in der Regel eine Entscheidung Konsequenzen für eine Vielzahl weiterer Parameter nach sich, was die Suche nach dem Optimum deutlich verkompliziert. Diesen Suchprozess zu automatisieren, ist ebenfalls Teil des Forschungsprojekts. Kayal und Balagurin wollen einen Algorithmus entwickeln, der ihnen diesen „Annäherungsprozess“ abnimmt – oder diesen zumindest deutlich verbessert.

Mit ihrer Arbeit fangen die beiden Wissenschaftler nicht bei Null an: Einen Sternsensoren haben sie bereits zwischen 2009 und 2012 entwickelt. Er soll, wenn alles klappt, Ende dieses Jahres mit einem rund 30 Kilogramm schweren Satelliten der Technischen Universität Berlin auf eine Umlaufbahn um die Erde geschickt werden.

Dabei konnten sie auch reichlich Erfahrungen im Bereich der Materialwissenschaften sammeln – schließlich muss der Sensor für seine Reise durch den Erdorbit unter anderem strahlungs- und schockresistent sein, Temperaturwechsel von minus 40 bis plus 100 Grad Celsius verkraften und im Vakuum funktionieren. Hilfe fanden die beiden Wissenschaftler bei diesem Teil der Arbeit übrigens im benachbarten Technischen Betrieb der Universität Würzburg. Deren Mitarbeiter hätten sie hervorragend unterstützt, so Hakan Kayal.

Kleine Satelliten sind die Zukunft

Eine spätere wirtschaftliche Verwertung des Würzburger Star-Trackers ist nach Aussage von Kayal nicht ausgeschlossen. Die Möglichkeiten dafür würden derzeit überprüft. Ein Markt dafür sei jedenfalls vorhanden: „Nanosatelliten werden von Tag zu Tag besser; immer mehr von ihnen werden auf Raketen in den Orbit geschickt“, sagt Kayal. Und je besser die Satelliten werden, desto anspruchsvoller könnten ihre Missionen ausfallen. „Dann sind auch interplanetare Missionen beispielsweise zu Mond, Mars oder Jupiter denkbar“, so Kayal.

Bis es soweit ist, müssen die Satelliten allerdings über eine wichtige Funktion verfügen: Autonomie. Schließlich sollten sie in der Lage sein, auf plötzliche Ereignisse selbstständig zu reagieren, wenn sie mehrere Millionen Kilometer von der Erde entfernt sind und die Signale zur Bodenstation auf der Erde und wieder zurück einfach zu lange dauern würden. Auch daran arbeiten die Würzburger Raumfahrttechniker:

Im Rahmen des Projekts ASAP (Autonomes Sensor- und Autonomes Planungssystem) entsteht zum Beispiel derzeit ein neues System, das unvorhersehbare, kurzzeitige Leuchtphänomene wie Meteoreintritte in die Erdatmosphäre eigenständig an Bord von Nanosatelliten detektieren und aufzeichnen kann. Und im Rahmen des Projektes ADIA (Autonomes Diagnosesystem für Satelliten) entwickeln sie ein System, das selbständig in der Lage ist, sich anbahnende oder bereits aufgetretene Fehler an Bord von Satelliten zu analysieren und Ursachen festzustellen. Damit könne wertvolle Zeit bei der Erkennung und Behebung von Problemen gewonnen werden, was zur Erhöhung der Betriebssicherheit von Satelliten beitragen kann, so Kayal.

Kontakt

Prof. Dr.-Ing. Hakan Kayal, Professor für Raumfahrttechnik, T: (0931) 31-86649, hakan.kayal@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Verbesserung des mobilen Internetzugangs der Zukunft
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Affen aus dem Weltraum zählen? Neue Methoden helfen die Artenvielfalt zu erfassen
21.07.2017 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten