Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mobile Geräte am Körper lassen sich über einen Stecknadelkopf präzise und diskret bedienen

24.10.2017

Mobile Endgeräte, wie die neue Version der „Apple Watch“, werden für eine Vielzahl von Aktivitäten genutzt. Man liest auf ihnen Kurznachrichten, surft im Internet und überprüft Gesundheitswerte. Doch diese Mini-Computer haben ein Manko: Aufgrund der geringen Bildschirmgröße lassen sie sich nur schwer bedienen. Informatiker der Universität des Saarlandes haben nun eine Alternative entwickelt, die sie „DeformWear“ nennen. Ein winziger Schalter, nicht größer als ein Stecknadelkopf, wird beispielsweise in einen Ring eingearbeitet und am Körper getragen. Er lässt sich in alle Richtungen bewegen, hinein- und zusammendrücken und zusätzlich nach rechts, links, oben und unten schieben.

„Bei Mobilgeräten wie etwa der Smartwatch sind die interaktiven Bildschirme so klein, dass man mit der einzelnen Berührung nur wenige Steuerungsbefehle auslösen kann “, erklärt Jürgen Steimle, Professor für Mensch-Maschine-Interaktion an der Universität des Saarlandes.


Die Prototypen der Saarbrücker Informatiker lassen sich mit minimalen Bewegungen präzise und diskret steuern.

Steimle/Weigel, Universität des Saarlandes

Mit seiner Forschungsgruppe im Exzellenzcluster „Multimodal Computing and Interaction“ sucht er nach neuen Wegen, um kleine Mobilgeräte am Körper möglichst unauffällig und schnell zu bedienen. In einem früheren Forschungsprojekt hat Steimle gemeinsam mit seinem Mitarbeiter Martin Weigel bereits nachgewiesen, dass sich auch die menschliche Haut für die Eingabe eignet. Während dieser Studie kam ihnen die Idee zum aktuellen Projekt.

„Wir fanden heraus, dass unsere Studienteilnehmer nicht nur die bereits bekannten Smartphone-Gesten aus der Haut ausführten, sondern die Haut auch verschoben oder gar mit zwei Fingern zusammendrückten, um so Mobilgeräte zu bedienen“, berichtet Martin Weigel.

Weitere Recherchen führten sie zu einem Sensor, der eigentlich Roboterhände feinfühliger machen soll. „Auch wenn der Sensor für die Robotik entwickelt wurde, fanden wir den geringen Formfaktor vielversprechend für am Körper getragene Mobilgeräte”, erklärt Weigel.

Geringer Formfaktor beschreibt in diesem Fall einen im Durchmesser nur zehn Millimeter großen Sensor, der die Größe einer Erbse hat und wie ein Luftballon verformbar ist. Von innen strahlt eine Infrarot-Leuchtdiode die veränderbare Membran an. Das Licht wird reflektiert und von vier Fotodioden gemessen. Aus diesem Messwert lässt sich berechnen, wie der Sensor gerade verformt wird.

Um ihre Idee zu testen, integrierten die Forscher diesen Sensor in einen Ring, einen Armreif und ein Amulett, das kaum größer als ein 50-Cent-Stück ist. Die Herausforderung bestand nun darin, Gesten zu entwickeln, um damit Mobilgeräte zu steuern. Die Forscher taten dies für eine Smartwatch und für eine Brille, mit der man in die Virtuelle Realität eintauchen kann.

Sie definierten auch Bewegungsabfolgen, um einen Fernseher zu steuern und Musik ohne Hinzuschauen abzuspielen. Dies ließen die Saarbrücker Informatiker von 24 Personen testen, insgesamt 18.141 Mal. Ihre Ergebnisse sind eindeutig. „Trotz der winzigen Oberfläche sind die Interaktionen präzise und ausdrucksstark, da sie die genaue Motorik der Fingerspitze ausnutzen und dabei die drei Grundformen Drücken, Schieben und Kneifen verwenden“, so Weigel.

Professor Jürgen Steimle ist überzeugt: „Wenn für die Eingaben nur ein winziger Sensor verformt werden muss, können Geräte an Körperstellen getragen werden, über die eine schnelle und unauffällige Bedienung möglich ist. Dies wird der Industrie dabei helfen, noch kleinere Steuergeräte auf den Markt zu bringen.“

Hintergrund: Saarland Informatics Campus

Den Kern des Saarland Informatics Campus bildet die Fachrichtung Informatik an der Universität des Saarlandes. In unmittelbarer Nähe forschen auf dem Campus sieben weitere, weltweit renommierte Forschungsinstitute. Neben den beiden Max-Planck-Instituten für Informatik und Softwaresysteme sind dies das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI), das Zentrum für Bioinformatik, das Intel Visual Computing Institute, das Center for IT-Security, Privacy and Accountability (CISPA) und der Exzellenzcluster „Multimodal Computing and Interaction“.

Weitere Informationen:
Artikel, Fotos und Video
https://hci.cs.uni-saarland.de/research/deformwear/

Pressefotos unter: www.uni-saarland.de/pressefotos

Fragen beantwortet:
Professor Dr. Jürgen Steimle
Lehrstuhl für Mensch-Computer-Interaktion
Saarland Informatics Campus
Universität des Saarlandes
Tel.: +49 681 302-71080
E-Mail: steimle@cs.uni-saarland.de

Redaktion:
Gordon Bolduan
Kompetenzzentrum Informatik Saarland
Saarland Informatics Campus
Universität des Saarlandes
Telefon: +49 681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

https://hci.cs.uni-saarland.de/research/deformwear/

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Industrie 4.0: Fremde Eindringlinge im Unternehmensnetz erkennen
16.04.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Die Thermodynamik des Rechnens
11.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

20.04.2018 | Biowissenschaften Chemie

Digitale Medien für die Aus- und Weiterbildung: Schweißsimulator auf Hannover Messe live erleben

20.04.2018 | HANNOVER MESSE

Neurodegenerative Erkrankungen - Fatale Tröpfchen

20.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics