Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus Indizien auf die eigentliche Größen schließen: ein Fall für Mathematiker

06.05.2009
PTB entwickelt mathematische Auswerteverfahren zur zerstörungsfreien Messung von Nanostrukturen

Lässt sich die Schuld eines Angeklagten nicht direkt nachweisen, dann können Indizien helfen. Ähnlich indirekt müssen auch Experten fürs genaue Messen immer häufiger vorgehen: Lässt sich eine Messgröße nicht direkt messen, dann muss man andere Größen messen und mit Hilfe intelligenter Computerprogramme auf die eigentlich interessierende Größe rückschließen.

Genauso sind Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) zusammen mit Partnern in einem Verbundprojekt des Bundesforschungsministeriums (BMBF) vorgegangen. Es geht um die Messung von immer kleineren Computerbauteilen und anderen industriellen Strukturen, die nur noch nanometergroß sind und sich daher nicht mehr mit der klassischen Methode der Lichtmikroskopie untersuchen lassen.

Eine neue Methode, solche Strukturen zu untersuchen, ist die Scatterometrie. Dabei wird an periodischen Nanostrukturen Licht gestreut und aus den Eigenschaften des gestreuten Lichtes auf die Abmessungen der Probe geschlossen. Die Projektpartner haben nun ein mathematisches Modell und ein sogenanntes inverses Verfahren entwickelt, die solche Messungen mit großer Genauigkeit ermöglichen.

Schon heute werden in der PTB die neuen Messmethoden entwickelt, die in der Industrie zur Charakterisierung und Qualitätskontrolle von Nanostrukturen, also Objekten mit Abmessungen von weniger als 1/1000 Millimetern, erforderlich sind. Solch kleine Bauteile werden in Zukunft immer wichtiger, um Computer noch schneller zu machen, völlig neue Produkte zu entwickeln oder bei existierenden Technologien den Material- oder Energieeinsatz zu minimieren.

Die entsprechenden Messmethoden müssen nicht nur stets noch präziser werden, sondern erfordern auch immer häufiger aufwendige mathematische Auswerteverfahren. Ein neue Methode zur zerstörungs- und kontaminationsfreien sowie schnellen Vermessung von Nanostrukturen ist die Scatterometrie, bei der an periodischen Nanostrukturen Licht gestreut und aus den Eigenschaften des gestreuten Lichtes indirekt auf die Abmessungen der Probe geschlossen wird. Dazu sind ein korrektes mathematisches Modell und ein so genanntes inverses Verfahren notwendig, bei dem aus den Messdaten (Streueffizienzen) auf die eigentlich interessierenden geometrische Größen zur Charakterisierung der Nanostrukturen geschlossen wird. Ein solches Auswertungsverfahren ist jetzt von der PTB-Arbeitsgruppe Modellierung und Simulation in Zusammenarbeit mit Mathematikern am Weierstrass-Institut für Angewandte Analysis und Stochastik in Berlin sowie Experimentatoren der PTB-Arbeitsgruppen Höchstauflösende Mikroskopie und EUV-Radiometrie entwickelt worden. Die Gesamtkooperation ist Teil des BMBF-Verbundprojekts CDuR32.

Das klassische Verfahren zur Sichtbarmachung und Messung kleiner Strukturen ist die Mikroskopie. Optische Abbildungsverfahren sind zerstörungsfrei und sehr schnell. Das erreichbare Auflösungsvermögen ist jedoch durch die Wellenlänge des verwendeten Lichts begrenzt. Da die neuen nano-strukturierten Objekte viel kleiner als die Wellenlänge sichtbaren Lichtes sind, werden auch neue Messmethoden benötigt. Dabei werden entweder Licht viel kleinerer Wellenlänge oder nicht-abbildende Verfahren verwendet.

Gegenstand dieser Untersuchungen sind z.B. Halbleiterphotomasken, auf denen die Abmessungen periodischer Linienstrukturen (Liniengitter) scatterometrisch bestimmt werden. Dazu wird sichtbare oder UV-Strahlung auf die Probe gerichtet und die räumliche Verteilung der gestreuten Strahlung gemessen (Abb. 1). Die PTB betreibt für diese Anwendung zwei verschiedene Scatterometer, die mit Licht verschiedener Wellenlängen arbeiten: ein EUV-Scatterometer [1], das bei Wellenlängen zwischen 12 Nanometern und 14 Nanometern betrieben wird, sowie ein DUV-Scatterometer, das Licht einer Wellenlänge von 193 Nanometern verwendet [2]. Mit Hilfe komplexer mathematischer Modelle wird dabei jeweils aus der Intensitätsverteilung die geometrische Form der Oberflächenstrukturen rekonstruiert [3, 4].

Mathematische Modelle und ausführliche Berechnungen sind insbesondere auch notwendig, um die Präzision bzw. Messunsicherheit der gemessenen Strukturparameter anzugeben [4, 5]. Untersuchungen der PTB-Arbeitsgruppe Modellierung und Simulation zeigen, dass Abmessungen im Bereich zwischen 50 Nanometern und 500 Nanometern mit den in der PTB vorhandenen Instrumenten mit einer relativen Unsicherheit von weniger als 2 % bestimmt werden können. Erste Vergleiche der Resultate von EUV- und DUV-Scatterometrie ergeben zudem eine gute Übereinstimmung von unabhängigen Messungen an denselben Proben. Weitere Arbeiten mit Hilfe von Simulationen (virtuelles Experiment) zielen auf eine Optimierung der Messparameter ab [6], darunter der Einfallswinkel des Lichts oder die Anzahl der notwendigen Messungen zur präzisen Rekonstruktion der Strukturen.

Wissenschaftliche Veröffentlichungen dazu:
[1] C. Laubis, et al. (2006): Characterization of large off-axis EUV mirrors with high accuracy reflectometry at PTB, Proc. SPIE 6151, 61510I.

[2] M. Wurm, B. Bodermann; F. Pilarski (2007): Metrology capabilities and performance of the new DUV scatterometer of the PTB Proc. SPIE 6533 65330H.

[3] R. Model, A. Rathsfeld, H. Groß, M. Wurm, B. Bodermann (2008): A scatterometry inverse problem in optical mask technology. J. Phys., 135, 012071.

[4] H. Gross, A. Rathsfeld, F. Scholze, M. Bär (2009): Profile reconstruction in EUV scatterometry: Modeling and uncertainty estimates. WIAS Preprint No. 1411(http://www.wias-berlin.de/main/publications/wias-publ/).

[5] H. Gross, A. Rathsfeld, F. Scholze, R. Model, M. Bär (2008): Computational methods estimating uncertainties for profile reconstruction in scatterometry. Proc. SPIE 6995, 6995OT.

[6] H. Gross, A. Rathsfeld (2008): Sensitivity Analysis for Indirect Measurement in Scatterometry and the Reconstruction of Periodic Grating Structures. Waves in Random and Complex Media, 18, 129.

Ansprechpartner:
Dr. Hermann Groß, Dr. Markus Bär, PTB-Fachbereich 8.4 Mathematische Modellierung und Datenanalyse, Tel. (030) 3481-7405 und (030) 3481-7687,

E-Mails: hermann.gross@ptb.de und markus.baer@ptb.de

Dr. B. Bodermann, FB 4.2, PTB-Fachbereich 4.2 Bild- und Wellenoptik, Tel. (0531) 592-4222, E-Mail: bernd.bodermann@ptb.de

Dr. Frank Scholze, PTB-Fachbereich 7.2 Radiometrie mit Synchrotronstrahlung, Tel. (030) 6392-5094, E-mail: frank.scholze@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten