Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritt beim mobilen Laser-Scanning

07.10.2014

Mit Laser-Scannern lassen sich Innenräume präzise ausmessen und als digitale 3D-Modelle abbilden. Auf diesem Gebiet treiben drei Firmengründer an der Uni Würzburg eine Innovation voran. Sie ist für die Autoindustrie und andere Branchen interessant.

Laser-Scanner tasten ihre Umgebung mit Lichtimpulsen ab und registrieren deren Reflexion an Oberflächen. Auf diese Weise können die Geräte sehr exakt Entfernungen messen und Daten liefern, aus denen sich ein dreidimensionales Abbild der Umgebung konstruieren lässt.


So schön lassen sich Laserscans in Bilder umsetzen: Zu sehen ist ein Teil der Altstadt von Bremen.

(Foto: MiM)

„Die Technik gibt es seit ungefähr 15 Jahren und sie wird auch häufig verwendet“, sagt der Würzburger Informatiker Dr. Jan Elseberg: „Die Polizei benutzt Laser-Scanner, um Tatorte aufzunehmen; im Städtebau wird damit überprüft, ob auf Baustellen nach Plan gebaut wird.“ Die Scanner kommen auch zum Einsatz, um archäologische Grabungen zu dokumentieren oder um Gegenstände für den 3D-Druck zu digitalisieren.

Gängige Laser-Scanner sind vier bis fünf Kilogramm schwer und etwa so groß wie zwei Milchtüten. Für Messungen werden sie in der Regel auf ein Stativ gesetzt. Sollen längere Strecken gescannt werden, montiert man die Geräte auf Autos oder Roboterfahrzeuge.

Die fahrbaren Unterlagen brauchen dann allerdings zusätzliche Sensoren und GPS-Empfang – schließlich müssen die Messdaten des Scanners mit dem Bewegungsprofil des Gefährts so verarbeitet werden, dass am Ende ein korrektes Bild von der Umgebung entsteht.

Mobiles Laser-Scanning ohne GPS-Daten

Hier kommt nun eine technische Innovation ins Spiel, für die Elseberg bei seiner Doktorarbeit an der Jacobs University Bremen einige Grundlagen geschaffen hat: „Wir kommen beim mobilen Laser-Scanning ohne zusätzliche Sensorik aus. Und wir können auch in Innenräumen oder Tunnels problemlos aus der Bewegung heraus scannen, weil ein GPS-Signal für unsere Methode nicht nötig ist.“

Diese Neuerung birgt ein Geschäftspotenzial, das Elseberg jetzt nutzen will: Zusammen mit den Informatikern Tobias Lindeholz und Professor Rolf Lakämper hat er ein Firmengründungsteam namens MiM (Measurement in Motion) auf die Beine gestellt. Die drei wollen die innovative Technologie substanziell vorantreiben und marktreif machen, sie als Dienstleistung anbieten oder sie als Hard- und Softwarepaket verkaufen.

Autoindustrie soll das erste Standbein sein

„Als Einstiegsmarkt wollen wir die Automobilbranche bedienen und haben dafür auch erste Interessenten“, so das MiM-Team. In der Autoindustrie seien aktuelle 3D-Abbildungen der Produktionsstätten absolut hilfreich – vor allem, wenn ein Modellwechsel ansteht. „Dann muss detailliert geplant werden, wie die Produktion für die Montage des neuen Modells zu verändern ist“, erklärt Elseberg.

Dem Informatiker zufolge bewältigt die Industrie diese Herausforderung derzeit mit statischen Laser-Scannern. Mit MiM gehe das deutlich besser: „Dank unserer Technologie können wir den Laser-Scanner in der Fabrik einfach aufs Band stellen und ihn durch den Fertigungsprozess schleusen. Danach ziehen wir die Festplatte ab und haben, nach einer Bearbeitungszeit von einigen Minuten, ein fertiges 3D-Modell von der Fabrik. Dieser Prozess dauert für eine ganze Fertigungshalle nur wenige Tage, und die Produktion kann in dieser Zeit weiterlaufen. Die Arbeitssicherheit ist dabei gewährleistet, weil wir Laserlicht verwenden, das den Augen nicht schadet.“

Tunnelbau und andere Geschäftsfelder im Blick

Die Autoindustrie soll also das erste Standbein von MiM sein. Als weitere Geschäftsfelder hat das Gründerteam unter anderem den Tunnel- und Bergbau oder die Innenraumthermografie im Blick. Beispiel Tunnelbau: Hier lässt sich mit der neuartigen mobilen Laserscan-Technik beispielsweise überprüfen, ob ein Straßen- oder Eisenbahntunnel über die Jahre stabil bleibt: Mit Hilfe der exakten 3D-Modelle würde es schnell auffallen, wenn die Tunnelwände in Bewegung geraten.

Gefördert vom Bundeswirtschaftsministerium

Seit 1. Oktober 2014 werden die drei Gründer für ein Jahr aus dem Exist-Stipendienprogramm des Bundesministeriums für Wirtschaft und Energie gefördert. Als wissenschaftlicher Mentor steht ihnen in dieser Zeit Informatik-Professor Andreas Nüchter zur Seite. Mit dem Exist-Programm unterstützt das Ministerium Hochschulabsolventen, Wissenschaftler und Studierende, die sich auf die Gründung einer technologieorientierten oder wissensbasierten Firma vorbereiten.

Gefördert werden die Gründer auch vom Servicezentrum Forschung und Technologietransfer (SFT) der Universität Würzburg. Zu dessen Aufgaben gehört es, Unternehmensgründungen aus der Universität zu unterstützen und zu begleiten. Das SFT will dazu beitragen, dass Innovationen aus der Wissenschaft möglichst schnell den Weg in die Wirtschaft finden.

Kontakt

Dr. Jan Elseberg, MiM (Measurement in Motion), Institut für Informatik, Universität Würzburg, T (0931) 31-86893, jan.elseberg@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten