Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Computern den Neuronen auf der Spur

17.12.2008
Über 400.000 Euro von der VolkswagenStiftung für gemeinsames Projekt von Physikern der Universität Augsburg und der Humboldt-Universität

Mit insgesamt 3,3 Millionen Euro fördert die VolkswagenStiftung neun Projekte zur Modellierung und Simulation komplexer Systeme. Mit über 400.000 Euro geht eine der höchsten Einzelfördersummen an ein gemeinsames Projekt der Physiker Prof. Dr. Dr. h. c. mult. Peter Hänggi (Universität Augsburg) und Prof. Dr. Lutz Schimansky-Geier (Humboldt-Universität zu Berlin), das neue Erkenntnisse über die Signalverarbeitung in anregbaren Neuronen und über biomolekulare Transportprozesse verspricht.

Prägnante Bilder von Körperzellen, Molekülen und anderen winzigen Bausteinen in unserem Innersten sind heute eine Selbstverständlichkeit. Und dennoch sind viele biologische Prozesse wie die neuronale Signalverarbeitung und biomolekulare Transportprozesse unvollständig verstanden oder ungenügend vorhersagbar. Wie baut sich beispielsweise die Hülle eines Viruspartikels exakt zusammen? Wie funktioniert die Signalverarbeitung von Neuronen und Ionenkanälen? Oder wie kann ein Bakterium das Sonnenlicht in chemische Energie umsetzen? Damit komplexe Vorgänge dieser Art genau verstanden und dann im Sinne einer Bio-Nanotechnologie vielleicht genutzt werden können, werden sie mit Computern modelliert und simuliert.

Im Rahmen ihrer 3,3 Millionen Euro schweren Initiative zu solcher Modellierung und Simulation komplexer Systeme fördert die Volkswagenstiftung u. a. mit über 400.000 Euro das Projekt "Rate theory for driven complex biosystems: stochastic modeling and computer simulations", für das der Augsburger Physiker Prof. Dr. Dr. h. c. mult. Peter Hänggi (Lehrstuhl für Theoretische Physik I) gemeinsam mit seinem Kollegen Prof. Dr. Lutz Schimansky-Geier vom Institut für Physik der Humboldt-Universität zu Berlin verantwortlich zeichnet

Ziel dieses Projektes ist die Entwicklung konzeptioneller Ansätze zur Modellierung und numerischen Simulation in zwei interdisziplinären Bereichen komplexer Ratenprozesse. Bei diesen handelt es sich zum einen um die neuronale Signalverarbeitung und zum anderen um typische Translokationsprozesse von Biomolekülen durch Engstellen (Nanoporen, Nanoröhren, Ionenkanäle).

Hänggis und Schimansky-Geiers Arbeitsgruppen genießen auf dem Gebiet der stochastischen Modellierung physikalischer und biophysikalischer Systeme in der Nähe und fernab vom Gleichgewicht weltweites Ansehen. In dem von der VolkswagenStiftung geförderten Projekt konzentrieren sie sich auf die analytische und numerische Untersuchung neuer physikalischer Situationen, aus deren Ergebnissen sich Vorschläge und Anregungen zu neuen Experimenten in der physikalischen Biologie ableiten lassen werden.

Ansprechpartner:
Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
D-86135 Augsburg
Telefon +49(0)821-598-3250
peter.hanggi@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Cybersicherheit für die Bahn von morgen
24.03.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie