Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Berlin und Fraunhofer-Institut IZM entwickeln gemeinsam neuronales Interface

04.12.2007
Wenn es funkt: Schnittstelle zwischen Mensch und Prothese

Eine dünne Schicht Elektronik über einer haarfeinen Platte, die gerade einmal acht mal acht Millimeter groß ist, und aus der hundert feine und spitze Nadeln nach un-ten heraus ragen - so könnte in wenigen Jahren die Schnittstelle aussehen, über die Menschen eine Prothese fast so gut wie eine normale Hand oder ein gesundes Bein bewegen.

Wissenschaftlerinnen und Wissenschaftler des Forschungsschwerpunktes "Technologien der Mikropheripherik" der Technischen Universität Berlin (TUB) und des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration in Berlin-Wedding entwickeln zurzeit ein solches "Interface". Und der Physiker Matthias Klein ist recht zuversichtlich, dass die Technik in der Praxis gute Chancen haben könnte.

"Ein solches Interface lässt sich zwar auch direkt verdrahten", erklärt der Wissenschaftler. Dann aber würden Drähte von den Nerven aus dem Inneren des Armstumpfes oder sogar aus dem Inneren des Gehirns an die Oberfläche des Gewebes zu einer Art Stecker führen. Das würde jedoch ein erhebliches Infektionsrisiko bedeuten. Daher entwickeln die Berliner Forscher gemeinsam mit der University of Utah eine drahtlose Schnittstelle, die in Fachkreisen "Array" genannt wird. Seit mehr als einem Jahr kooperieren die Universität in den USA und das Fraunhofer-Institut in Berlin. Einer der Kooperationspartner in Utah ist dabei Prof. Dr.-Ing. Florian Solzbacher. Der Experte im Bioingenieurwesen ist TU-Absolvent.

... mehr zu:
»Gewebe »IZM »Interface »Nerv »Prothese »Schnittstelle

Die hundert nadelfeinen Spitzen an der Unterseite werden in das Gewebe gedrückt. Sendet nun eine Nervenzelle ein Signal in Form eines winzigen elektrischen Stromimpulses, können die Nadelspitzen diesen Stromfluss aufnehmen. Dazu benötigen sie einen direkten Kontakt zum sendenden Nerv im Gehirn oder am Nervenstrang.

Der Rest ist Mikroelektronik vom Feinsten: Die Spitzen leiten das Signal an einen winzigen Chip weiter. Dieser verstärkt das schwache Signal und filtert gleichzeitig störendes Rauschen heraus. Ganz oben auf dem gerade einmal drei Millimeter hohen Bauteil gibt es dann noch eine winzige Antenne, die das Signal nach außen sendet.

Bleibt das Problem der Energieversorgung. Es würde wenig bringen, wenn zwar die Drähte fehlen und damit eine große Infektionsgefahr eliminiert ist, stattdessen aber häufig unter hoher Infektionsgefahr eine Batterie gewechselt werden muss. Daher versorgen die Forscher der TU Berlin und des Fraunhofer IZM ihr Interface einfach drahtlos mit Energie, indem sie außerhalb des Körpers mit einer Spule ein kleines elektrisches Feld anlegen. Nicht viel anders liest ein Scanner die Informationen auf dem Minichip, der in elektronisch lesbare Reisepässe eingebaut wird. Auch diese Technik ist also gut erprobt.

Steckt so ein Interface erst einmal im Gewebe, stellt sich der Mensch zum Beispiel vor, er würde gerade seine Hand zur Faust ballen. Das Nervensignal wird nun zu einer Software weiter geleitet, die nach einigen Malen "Faust ballen" lernt, welches Signal dabei durch die Nervenbahnen saust. Kommt nun im Alltag das Signal "Faust ballen", gibt die Software den Befehl in einer "Sprache" weiter, die der Elektronik in der Prothese geläufig ist. Langsam lernt der Mensch dann, die Prothese fast so wie eine verlorene Hand zu benutzen. Haben die Ingenieure dieses Interface fertig entwickelt, kann es nicht nur in das Gehirn oder in das Gewebe des Stumpfes eines Gliedmaßes eingebaut werden, um Signale von den Nerven an die Elektromotoren der Prothese weiter zu geben. Das Ganze würde natürlich auch umgekehrt funktionieren, erklärt Matthias Klein: "Sensoren in der Prothese können Signale so auch über das Interface an das Nervengewebe im Gehirn weiter leiten." Mit Hilfe des "Arrays" könnten Prothesen in Zukunft also auch Sinneseindrücke an den Körper liefern.

Weitere Informationen erteilt Ihnen gern: Dipl.-Phys. Matthias Klein, Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration Berlin, Tel.: 030/46403-612/-100, Fax: 030/46403162, E-Mail: klein@izm.fhg.de

Dr. Kristina R. Zerges | idw
Weitere Informationen:
http://www.pressestelle.tu-berlin.de/medieninformationen
http://www.pressestelle.tu-berlin.de/newsportal

Weitere Berichte zu: Gewebe IZM Interface Nerv Prothese Schnittstelle

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Layouterfassung im Flug: Drohne unterstützt bei der Fabrikplanung
19.05.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht Intelligente Industrialisierung von Rechenzentren
15.05.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten