Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bilder in den Kopf bringen

27.01.2006


Magnetresonanztomographen sind nicht nur in der Lage, Schnittbilder des menschlichen Körpers zu liefern, sondern auch dem Gehirn zuzusehen, wie es verschiedene Aufgaben bewältigt. Ein optisches Projektionssystem übermittelt dem Probanden dafür Bilder in die Röhre.


Das kompakte Design des optischen Projektionssystems gewährleistet, dass die Probandin in der engen Tomographenröhre für die Hirnforschung fernsehen kann. © NordicNeuroLab



Eine faszinierende Methode, dem lebenden Gehirn dabei zuzusehen, wie es denkt, fühlt oder Bewegungen steuert, ist die funktionelle Magnetresonanztomographie fMRT. Soll etwa untersucht werden, auf welche Weise ein Mensch Seheindrücke verarbeitet, so zeigen ihm Ärzte in der Röhre eines solchen Tomographen verschiedene Bilder. Während er sie betrachtet, nimmt das Gerät Schnittbilder des Gehirns auf. Zusätzlich zur konventionellen MRT misst das Gerät die neuronale Aktivität über die örtlich und zeitlich veränderliche Sauerstoffkonzentration in Blut und Gewebe. Nach einer Computerauswertung erhält man die bekannten Bilder, in denen Farben anzeigen, wie sehr die grauen Zellen in den verschiedenen Arealen gerade beschäftigt sind.



Eine Crux besteht jedoch darin, dass das Bedienpersonal dem zu untersuchenden Menschen nicht einfach Fotos in die sehr eng Röhre reichen kann. Weiterhin darf sich der Untersuchte auch nicht bewegen, da dies die Messergebnisse verfälschen würde. Daher kommen die Bilder über ein Projektionssystem zu ihm. Dieses muss nicht nur sehr kompakt sein, es darf auch keine ferromagnetischen Materialien wie Eisen enthalten, denn sie würden die Messungen stören. Es eignen sich darüber hinaus nur Displays, die von Magnetfeldern möglichst wenig beeinflusst werden. Wer schon einmal einen Magneten an eine Bildröhre gehalten hat, kennt den Effekt: Das Bild wird verzerrt.

Ein Projektionssystem für diesen Einsatz haben Wissenschaftler vom Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena entwickelt. Dafür setzten sie Mikrodisplays aus selbstleuchtenden organischen Leuchtdioden ein. Da es Okulare für beide Augen besitzt, kann im Tomographen sogar untersucht werden, wie Menschen räumlich sehen. Zudem kann über das Okularsystem beobachtet werden, wohin der Proband im Bild gerade blickt. Dies ermöglicht weitere Rückschlüsse für neurologische Untersuchungen. Gebaut wird das komplette System vom Auftraggeber, dem Unternehmen NordicNeuroLab im norwegischen Bergen. "Projektionssysteme für die Medizintechnik, aber auch solche für die Darstellung virtueller Realität werden immer mehr benötigt", weiß Stefan Riehemann von der IOF-Abteilung Optische Systeme. "Wir konzipieren oft solche Spezialsysteme - besonders für Bereiche, in denen kein konventionelles Gerät eingesetzt werden kann." Für ihre Applikationen setzen die Forscher vom IOF verschiedene Typen von Mikrodisplays ein. Diese basieren neben organischen Leuchtdioden (OLED) auf Flüssigkristallen oder Mikrospiegeln.

Ansprechpartner:
Dr. Stefan Riehemann
Telefon: 0 36 41 /8 07-2 36, Fax: -6 02
stefan.riehemann@iof.fraunhofer.de

Dr. Martin Palme
Telefon: 0 36 41 / 8 07-2 18
martin.palme@iof.fraunhofer.de

Dr. Johannes Ehrlenspiel | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.nordicneurolab.com
http://www.iof.fraunhofer.de/departments/optical-systems/system-simulation/index_d.html

Weitere Berichte zu: Leuchtdiode Proband Projektionssystem Röhre Tomograph

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Forschungsprojekt: Zukünftige Fahrzeugtechnologien im Open Region Lab – ZuFOR
30.03.2017 | Ostfalia Hochschule für angewandte Wissenschaften

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE