Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Informationen hinter Nanogittern

01.09.2000


TU Berlin, Wissenschaftsdienst "Forschung aktuell", Ausgabe September 2000 - Datenspeicherung


Wissenschaftler der Technischen Universität Berlin arbeiten an der nächsten Generation der Datenspeicherung, der Mikroholographie. Mithilfe so genannter Reflektionsgitter sollen die Informationen nicht mehr nur auf der Oberfläche einer CD, sondern unter Ausnutzung ihres Volumens dreidimensional und in mehreren Schichten gespeichert werden. Schon in absehbarer Zeit sollen damit mehr als 150 Gigabyte auf einem Datenträger abgelegt werden können.

Der Laser macht es möglich. Mit ihm kann Licht zur Übertragung und Speicherung von Informationen genutzt werden. Er erzeugt Licht, dessen Wellen im Gleichtakt schwingen. Das eröffnet Wissenschaftlern die Möglichkeit, dem Lichtstrahl eine Information aufzudrücken. Beispielsweise können sie die Intensität des Lichts im Rhythmus einer Sprachschwingung modulieren oder Lichtwellen in ganz kurzen Abständen an- und ausschalten. Jedes "an" steht dann für ein logisches Bit 1, jedes "aus" für ein Bit 0. Diese Einsen und Nullen können mithilfe des Laserstrahls auch auf einen Datenträger wie die Compact Disc (CD) übertragen werden. Die CD im HiFi-Bereich und als CD-ROM in der Informationstechnologie (IT) ist heute das gebräuchlichste optische Speichermedium. Sie kann entweder nur durch größere Flächen oder eine höhere Speicherdichte erweitert werden. Doch die Speichermenge bleibt auch dort begrenzt. Die Entwicklung im IT - Bereich verläuft inzwischen so rasant, dass immer größere Datenspeicher benötigt werden. Die Mikroholografie, an der Prof. Dr. Hans Joachim Eichler vom Optischen Institut der Technischen Universität Berlin arbeitet, ist hierfür ein vielversprechender Lösungsansatz. Sie nutzt die dritte Dimension, das Volumen also, um Daten abzulegen.
Im Gegensatz zu herkömmlichen holographischen Methoden braucht die Mikroholographie keine teuren Kristalle als Speichermedium. Stattdessen kann man kostengünstig und in Massen herstellbare Photopolymere verwenden. Wenn ein solches Photopolymer mit einem speziellen Interferenzmuster eines oder mehrerer Laserstrahlen belichtet wird, entstehen Mikrohologramme. Dabei werden kleine optische Gitter mit Abständen von etwa 100 Nanometern zwischen den einzelnen Ebenen erzeugt. Diese Gitter können sich linear überlagern. In eine Stelle des Speichermediums werden mit den gewählten Laserstrahlen verschiedene Gitter übereinander eingeschrieben und können dann auch getrennt wieder ausgelesen werden. Im Unterschied zur herkömmlichen CD, wo sich an jeder Stelle nur ein Bit befindet, kann somit jeder Platz mehrfach belegt werden.
Prof. Dr. Hans Joachim Eichler verwendet dabei die Methode des "Wellenlängenmultiplexing". Bei ihr werden die überlappend eingeschriebenen Gitter durch Laserstrahlen unterschiedlicher Wellenlänge hergestellt. Jede Wellenlänge erzeugt dabei für sich ein Gitter. Beim Auslesen kann man die Daten dann wieder trennen, wenn abwechselnd die Laser mit der jeweiligen Einschreibe-Wellenlänge benutzt werden. Vergleichbar ist eine so beschriebene Disk mit mehreren übereinander gelagerten verschiedenfarbigen CDs. Jede Farbe symbolisiert dabei eine benutzte Wellenlänge.
Eine weitere Speichermöglichkeit entsteht, wenn Licht der gleichen Wellenlänge in Schichten übereinander abgespeichert wird. Dafür müssen die Photopolymere nur ausreichend dick sein. Der Laser erzeugt dann die optischen Gitter in mehreren räumlich übereinander liegenden Schichten. Durch Kombination dieser beiden Methoden könnten in absehbarer Zeit mehr als 150 Gigabyte auf einem Datenträger gespeichert werden. Momentan haben die handelsüblichen CD-ROMs eine Speicherkapazität von 650 Megabyte. 

Datenbank
Ansprechpartner: Prof. Dr. Hans Joachim Eichler, Technische Universität Berlin, Optisches Institut
Fachgebiet: Experimentalphysik
Forschungsprojekt: Mikrohologramme für die Datenspeicherung
Kontakt: Straße des 17. Juni 135, 10623 Berlin, Tel.: 030/314-22498, Fax: 030/314-26888, E-Mail: Eichler@Physik.TU-Berlin.DE, Internet: http://moebius.physik.tu-berlin.de/lasergrp/

Fotos sind im Internet abrufbar:
http://www.tu-berlin.de/presse/wissenschaftsdienst/00sep/index.html

Der Wissenschaftsdienst "Forschung aktuell" und der dazugehörige Expertendienst ist ein Service des Pressereferats der TU Berlin für Journalisten und andere Interessenten. Er entsteht in Zusammenarbeit mit den Wissenschaftlerinnen und Wissenschaftlern und soll einer breiteren Öffentlichkeit Einblicke in aktuelle Forschungsprojekte ermöglichen. Sie können den Dienst auch per E-Mail unter der Internetadresse http://www.tu-berlin.de/presse/wissenschaftsdienst/index.html
 abonnieren. Er erscheint zunächst viermal jährlich. Diese Texte stehen Ihnen zur Veröffentlichung frei. Der Abdruck ist honorarfrei, Belegexemplar erbeten.

Informationen erteilt Ihnen gern Stefanie Terp: Tel.: 030/314-23820, E-Mail: steffi.terp@tu-berlin.de.

Ramona Ehret |

Weitere Berichte zu: Bit Gitter Laserstrahl Schicht Speichermedium Wellenlänge

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Störungsfreie Kommunikation für die Fabriken von morgen
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie