Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsspeicher mit Langzeitgedächtnis

14.06.2002


Abb. 1: Querschnitt des Schichtaufbaus und der Elektrodenanordnung auf einem Silizium-Wafer. Im Bereich der Lanthan-Wismut-Titan-Oxid-Schicht zwischen den beiden Elektroden sind ein Farbmodell der Kristallgitterstruktur des La0,75Bi3,25Ti4O12 sowie eine hochauflösende elektronenmikroskopische Abbildung des Kristallgitters zu sehen. Die im Modell als Kügelchen dargestellten Atome sind farblich gekennzeichnet: Wismut und Lanthan - gelb; Titan - blau, Sauerstoff - rot. Die blauen Vierecke stehen für TiO6-Gruppen. Die Übereinstimmung der Lage der Atome im Modell mit dunklen (La, Bi, Ti) bzw. hellen (Sauerstoff) Punkten in der elektronenmikroskopischen Aufnahme verdeutlicht die Perfektion der gewachsenen Lanthan-Wismut-Titan-Oxid-Schicht. Der rote Pfeil bezeichnet die Richtung der remanenten Polarisation Pr, deren Ausrichtung nach oben bzw. unten dem zu speichernden Binärsignal 0 bzw. 1 entspricht.
Grafik: Max-Planck-Institut für Mikrostrukturphysik


Abb. 2: Hochauflösende elektronenmikroskopische Aufnahme einer perfekt gewachsenen Lanthan-Wismut-Titan-Oxid-Schicht mit a-Achsen-Orientierung im Querschnitt. Der Pfeil oben links entspricht dem roten Pfeil in Abbildung 1.

Grafik: Max-Planck-Institut für Mikrostrukturphysik


Forscher des Max-Planck-Instituts für Mikrostrukturphysik gelingt Durchbruch für die Entwicklung der nächsten Generation von Gigabit-Computerspeichern


Im weltweiten Bemühen um neue Computer-Arbeitsspeicher mit Langzeitgedächtnis - so genannte non-volatile random access memories (NV-RAMs) oder "nichtflüchtige RAMs" - haben Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik in Halle (Saale) einen wichtigen Durchbruch geschafft: Ihnen ist es jetzt erstmals gelungen, dünne Schichten aus dem ferroelektrischen Material Lanthan-Wismut-Titan-Oxid auf Silizium-Wafern in einer besonders günstigen Kristallorientierung aufzubringen und damit die Grundlage zu schaffen für Computerchips mit einem sehr großen Speichervermögen pro Quadratzentimeter (Science, 14. Juni 2002).

Die Arbeitsspeicher auch der neuesten Personalcomputer und Notebooks - die dynamic random access memories (DRAMs) - haben nur ein extrem kurzes Gedächtnis, das einige Hundert Male in der Sekunde elektronisch aufgefrischt werden muss. Deshalb gehen alle auf dem Bildschirm gezeigten Informationen sofort verloren, sobald der Computer von der Stromversorgung getrennt wird. Nach dem Wiedereinschalten müssen - beim Booten - alle Informationen wieder mühsam von der Festplatte geladen werden (sofern sie zuvor rechtzeitig gespeichert worden waren). Das ist ein zeitaufwändiger und lästiger Prozess. Nichtflüchtige Festkörperspeicher sind deshalb heute eines der interessantesten Forschungs- und Entwicklungsziele in der Halbleitertechnologie. Sie sollen die einmal eingespeicherte Information nicht wieder verlieren und damit das in den dynamischen Festkörperspeichern der integrierten Mikroelektronik (DRAMs) notwendige ständige Wiederauffrischen der Information überflüssig machen. Auch das Booten eines PC wäre dann nicht mehr nötig.


Die aussichtsreichsten nichtflüchtigen Speicherbausteine - die magnetic random access memories (MRAMs) und ferroelectric random access memories (FRAMs) - beruhen auf ferromagnetischen und ferroelektrischen Materialien. Um solche nichtflüchtigen Speicherbausteine in die Silizium-Mikroelektronik integrieren zu können, müssen sie als dünne Schichten auf Silizium-Wafern hergestellt werden. Doch einem Einsatz solcher nichtflüchtigen Speicherbausteine mit Speicherkapazitäten im Gigabit-Bereich stehen derzeit noch eine Reihe von Problemen im Wege, nach deren Lösung Festkörperphysiker weltweit intensiv forschen.

Eines der aussichtsreichsten Materialien für nichtflüchtige Speicherbausteine aus ferroelektrischen dünnen Schichten ist das Lanthan-Wismut-Titan-Oxid La0,75Bi3,25Ti4O12. Bisher war es jedoch nicht gelungen, dieses Material als dünne Schicht so auf Silizium-Wafern abzuscheiden, dass die guten Speichereigenschaften des Materials auch in der dünnen Schicht erhalten blieben. Das liegt daran, dass diese Schichten stark dazu neigen, in einer für die Anwendung "falschen" Kristallorientierung zu wachsen. Die besonderen Speichereigenschaften sind nämlich an eine bestimmte Kristallorientierung gebunden, die so genannte a-Achsen-Orientierung, die bisher in dünnen Schichten nicht verwirklicht werden konnte.

Einer Arbeitsgruppe des Max-Planck-Instituts für Mikrostrukturphysik in Halle (Saale) um Dr. Dietrich Hesse und Dr. Ho Nyung Lee ist es nun gelungen, einen Weg zu finden, auf Silizium-Wafern dünne Lanthan-Wismut-Titan-Oxid-Schichten herzustellen, die zu 99 % über die gewünschte a-Achsen-Orientierung verfügen. Dieser Erfolg gelang ihnen vor allem durch die Kombination einer 60 Nanometer (1 Nanometer = 1 Millionstel Millimeter) dicken Pufferschicht aus Yttrium-Zirkon-Oxid mit einer darüber befindlichen, elastisch gedehnten, nur 10 Nanometer dünnen Elektrodenschicht aus Strontium-Ruthenium-Oxid. Darüber hinaus verwendeten die Wissenschaftler bei der Herstellung der Schichten mit einem Laserverfahren einen besonders hohen Sauerstoffdruck, der für die richtige chemische Zusammensetzung dieser Schichten sorgt. In den derart erzeugten Dünnschichten konnten die Forscher nachweisen, dass diese dank der erreichten 99%-igen Kristallorientierung tatsächlich über die gewünschten Speichereigenschaften verfügten. Diese werden durch zwei physikalische Größen beschrieben, die "remanente Polarisation" - sie beschreibt die Größe des möglichen Speichersignals als gespeicherte Ladung pro Flächeneinheit, und die "Ermüdungsfestigkeit" - die Auskunft über die Langzeitstabilität der Speicherschicht gibt. Die Ermüdungsfestigkeit wurde in Langzeitexperimenten geprüft. Sie gibt die prozentuale Abnahme der remanenten Polarisation nach einer bestimmten Zahl von Lese-Schreib-Zyklen wieder.

Bei der remanenten Polarisation haben die Hallenser Wissenschaftler mit den a-Achsen-orientierten Lanthan-Wismut-Titan-Oxid-Schichten den weltweit größten für Schichten dieser Art auf Siliziumsubstrat erreichten Wert erzielt - 32 Mikrocoulomb pro Quadratzentimeter. Die bisher erreichten Werte lagen wegen der deutlich schlechteren Kristallorientierung um wenigstens 10 Mikrocoulomb pro Quadratzentimeter niedriger. Bei der Ermüdungsfestigkeit zeigen die bisher durchgeführten Langzeitexperimente, dass die remanente Polarisation nach 10 Milliarden (109) Lese-Schreib-Zyklen lediglich um etwa 9 Prozent abnimmt - ein guter Wert angesichts der durch die große remanente Polarisation gegebenen hohen Speicherkapazität.

Prof. Gösele, Direktor am Max-Planck-Institut für Mikrostrukturphysik, meint dazu: "Dank der perfekten Kristallorientierung erfüllen diese dünnen Schichten alle unsere Erwartungen. Die erfolgreiche Herstellung von a-Achsen-orientierten Schichten ermöglicht es nun, ihre Eigenschaften gezielt zu untersuchen und für ihre künftige Nutzung als nichtflüchtige Speicherschichten in der Mikroelektronik zu optimieren."

Dieses Projekt wurde durch die Max-Planck-Gesellschaft sowie durch die Deutsche Forschungsgemeinschaft gefördert.


Weitere Informationen erhalten Sie von:

Priv.-Doz. Dr. Dietrich Hesse
Max-Planck-Institut für Mikrostrukturphysik
Weinberg 2, D-06120 Halle/Saale, Germany
Tel. 03 45 - 55 82 - 7 41
Fax 03 45 - 55 11 - 2 23
E-Mail: hesse@mpi-halle.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft

Weitere Berichte zu: Mikrostrukturphysik Polarisation Schicht Speicherbaustein

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sicheres Bezahlen ohne Datenspur
17.10.2017 | Karlsruher Institut für Technologie

nachricht Saarbrücker Forscher erstellen digitale Objekte aus unvollständigen 3-D-Daten
12.10.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik