Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Analog-Digital-Umwandlung mit sehr hohen Datenraten

30.09.2016

Neues Verfahren ermöglicht eine optische Abtastung ohne optische Quelle

Die Datenströme im Internet nehmen mit jeder neuen Anwendung zu. Damit sie überhaupt erst übertragen werden können, werden analoge Signale in digitale Signale umgewandelt. Wie groß die Datenströme werden können, wird dabei entscheidend vom Umwandlungsverfahren bestimmt.


Die THz-Photonics group mit dem Analog-Digital-Wandler: Prof. Thomas Schneider und sein Team vom Institut für Hochfrequenztechnik der TU Braunschweig.

TU Braunschweig, frei zur Veröffentlichung

Die THz-Photonics group von Prof. Thomas Schneider an der Technischen Universität Braunschweig hat nun eine Methode entwickelt, mit der Datenraten in der Größenordnung von mehreren Terabit je Sekunde umgewandelt werden können. Ein Terabit pro Sekunde entspricht der Übertragung von 130.000 bis 230.000 Videos in HD-Qualität zur gleichen Zeit.

Der THz-Photonics group ist es gelungen, eine völlig neue Idee der Abtastung analoger Signale zu entwickeln und umzusetzen. Alle bisher eingesetzten Abtaster multiplizieren das analoge Zeitsignal mit Folgen von sehr kurzen Impulsen. Bei elektronischen Abtastern wird das Signal mit der Torfunktion, eine Rechteckfolge des Schaltkreises, multipliziert. Bei optischen Abtastern findet eine direkte Multiplikation zwischen dem Signal und zeitlich kurzen Laserpulsen in einem nichtlinearen Kristall oder einer nichtlinearen Faser statt.

Nach den Regeln der so genannten Fouriertransformation entspricht eine Multiplikation im Zeitbereich einer Faltung im Frequenzbereich. Dementsprechend basiert die neue Methode der Braunschweiger THz-Photonics group auf einer Faltung des Signalspektrums mit einem Frequenzkamm.

Auch wenn die zugrunde liegende Mathematik relativ kompliziert erscheine, erklärt Prof. Schneider, so sei die praktische Umsetzung der Methode verhältnismäßig einfach. Ganz im Gegensatz zur Elektronik lassen sich schon mit geringem Aufwand sehr hohe Datenraten abtasten. Außerdem lässt sich die Methode auf einem Silizium-Photonik Chip auf kleinstem Raum integrieren und alle Parameter der Abtastung lassen sich von außen durch elektrische Signale steuern.

Erzielt wurden die Forschungsergebnisse mit Hilfe von Berufungsmittelen von Prof. Schneider. Die Wissenschaftlerinnen und Wissenschaftler der THz-Photonics group arbeiten derzeit an einer Integration der Methode auf der Basis der „silicon-on-insulator“ (SOI)-Technologie, bei der mit Silizium dasselbe Material und dieselbe Technologie wie bei Computerchips verwendet wird.

Hintergrund Signalabtastung bei der Analog-Digital-Umwandlung

Die Abtastung ist der erste Schritt, um ein analoges Signal in ein digitales zu verwandeln. Dieses digitale Signal kann dann mit Computern verarbeitet oder über Glasfasern und mit Funkwellen übertragen werden. Ein Computer, das Internet oder auch Smartphones können nur einzelne Messgrößen, die in festen Zeitabständen aufgenommen werden, verarbeiten oder übertragen. Diese periodische Messung eines bestimmten Wertes an einem bestimmten Ort nennt man Abtastung. Ein Schaltkreis öffnet für eine fest definierte Zeit ein Tor zu einem Messgerät. Dementsprechend wird der Wert nur in der Zeit der Toröffnung abgenommen. Bislang wird die Abtastung vor allem mit elektronischen Schaltungen durchgeführt. Das reicht aus, so lange Werte mit relativ geringer Datenrate abgetastet werden sollen. In den weltweit verlegten Glasfasernetzen des Internet steigt die Datenrate aber kontinuierlich an.

Die Elektronik, die dort zum Einsatz kommt, arbeitet heute bereits an der Grenze ihrer Möglichkeiten. Die verwendeten Schaltkreise benötigen sehr viel Energie, die fast vollständig in Wärme umgewandelt wird. Um diese Wärme wieder abzuführen, wird zusätzliche Energie benötigt. Eine weitere Steigerung der Datenraten wäre dementsprechend mit einem großen Aufwand verbunden. Optische Abtaster haben hingegen den Vorteil, dass sie sehr große Bandbreiten im Terahertz-Bereich (1 THz = 1012 Hertz) bieten und damit sehr große Datenraten im Terabit je Sekunde-Bereich verarbeiten können (1 Tbit/s entspricht der Datenrate von mehr als 65.000 UHD-Videos bei Internet-Streamingdiensten).

Zusätzlich muss das optische Signal in einer Glasfaser nicht erst in ein elektrisches Signal gewandelt werden, wie bei elektronischen Abtastern. Allerdings benötigen optische Abtaster eine Quelle, die sehr kurze Pulse mit einer festen und sehr stabilen Wiederholrate liefert. Derartige modengekoppelte Laser sind relativ groß und die Abtastparameter wie Abtastrate und Abtastbandbreite lassen sich nicht einfach verändern. Vor allem lassen sich modengekoppelte Laser nicht auf einem Chip integrieren, wie es mit der von der „THz-Photonics group“ entwickelten Methode gegenwärtig erprobt wird.

Zur Publikation
Stefan Preussler, Gilda Raoof Mehrpoor, Thomas Schneider: Frequency-time coherence for all-optical sampling without optical pulse source, Scientific Reports 2016, DOI:10.1038/Srep34500

Kontakt
Prof. Dr. Thomas Schneider
Technische Universität Braunschweig
Institut für Hochfrequenztechnik
THz-Photonics group
Schleinitzstraße 22
38106 Braunschweig
Tel.: 0531 391-2003
E-Mail: thomas.schneider@ihf.tu-braunschweig.de

www.tu-braunschweig.de/ihf

Weitere Informationen:

https://magazin.tu-braunschweig.de/pi-post/analog-digital-umwandlung-mit-sehr-ho...

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

nachricht Modellfabrik Industrie 4.0: Forschungs- und Trainingsplattform für Wissenschaft und Wirtschaft
28.03.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten