Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vulkanasche und Flugverkehr: Nicht auf Sand bauen

10.03.2016

Vulkanasche kann Flugzeugmotoren beschädigen. Doch wie groß ist das Risiko wirklich? LMU-Vulkanologen haben dafür ein empirisches Modell entwickelt, weil gängige Tests mit Sand das Verhalten der Asche nicht korrekt widerspiegeln.

Vulkanasche ist für Flugzeuge gefährlich, da sie Düsentriebwerke, aber auch andere Flugzeugteile massiv beschädigen kann. Deshalb führte der Ausbruch des isländischen Vulkans Eyjafjallajökull im Jahr 2010 zu Luftraumsperrungen, die den Flugverkehr großräumig lahm legten und erhebliche wirtschaftliche Schäden nach sich zogen.


Foto: picture alliance / Westend61

„Die Schäden an den Triebwerken entstehen vor allem durch die Ablagerung geschmolzener Asche“, sagt Professor Donald Dingwell, Direktor des Departments für Geo- und Umweltwissenschaften. „Die Luftraumsperrungen waren auch deshalb so umfangreich, weil es noch keine ausreichenden Erkenntnisse zum Schmelzverhalten von Vulkanasche in Triebwerken gibt.“

Dingwell hat mit seinem Team nun gezeigt, dass die chemische Zusammensetzung der Asche dabei eine Rolle spielt - und dass Tests mit Sand oder Staubpartikeln die Auswirkungen von Vulkanasche auf Triebwerke nicht korrekt widerspiegeln. Mithilfe ihrer Ergebnisse, über die sie in der aktuellen Ausgabe des Fachmagazins Nature Communications berichten, haben die Vulkanologen ein Modell entwickelt, mit dem sich das Risiko besser abschätzen lässt.

In Düsentriebwerken herrschen Temperaturen von 1200°C bis zu 2000°C. Unter solchen Bedingungen schmilzt Vulkanasche und lagert sich auf den heißen Bauteilen der Flugzeugturbine ab. Dadurch verstopfen unter anderem Kraftstoffdüsen und Kühlluftbohrungen, außerdem besteht die Gefahr, dass die Aschepartikel in die Hitzeschutzschicht der Turbine eindringen und dort erheblichen Schaden anrichten.

„Bisher gibt es nur veraltete Tests, bei denen die Haltbarkeit von Turbinen gegenüber Partikeln in der Luft mithilfe von Sand untersucht wurde“, sagt Dingwell. „Vulkanische Asche unterscheidet sich chemisch aber deutlich von Sand. Zusätzlich kann ihre chemische Zusammensetzung auch noch sehr stark variieren, je nachdem, von welchem Vulkan sie stammt.“

Asche schmilzt beim Erhitzen generell früher als Sand

Darum haben die Forscher nun erstmals das Schmelzverhalten von Vulkanaschen systematisch untersucht. Dazu erhitzten sie Ascheproben von insgesamt neun Vulkanen auf bis zu 1650°C und simulierten so Temperaturen, wie sie an unterschiedlichen Stellen in Triebwerken herrschen können. Dabei zeigte sich, dass die Schmelztemperatur von vulkanischer Asche von deren chemischer Zusammensatzung abhängt: Die Asche schmilzt umso früher, je mehr basische Oxide sie enthält.

„Mithilfe unserer Daten konnten wir ein empirisches Modell entwickeln, das das Schmelzverhalten der Asche in Abhängigkeit von ihrer chemischer Zusammensetzung und von der Erhitzungsrate beschreibt“, sagt Dingwell. „Außerdem haben wir frühere Ergebnisse bestätigt, dass Asche generell bereits bei deutlich niedrigeren Temperaturen schmilzt als Staub oder Sand – sich also auch schneller auf den heißen Bauteilen ablagert.“ Die Wissenschaftler sind daher der Überzeugung, dass Experimente mit Sand nicht geeignet sind, um die Wirkung von Vulkanasche auf Turbinen zu untersuchen, da sie das Ausmaß der Schädigung unterschätzen.

„Mit unserem Modell liefern wir die Basis, die Ablagerung von Vulkanasche in Triebwerken zukünftig besser einzuschätzen”, sagt Dingwell. Als nächsten Schritt wollen die Wissenschaftler die Datengrundlage verbreitern und so das Modell weiter verbessern. Ein weiteres Ziel ist es, Triebwerke durch die Entwicklung von „ablagerungs-abweisenden“ Oberflächen weniger anfällig zu machen.
Nature Communications 2016

Publikation:
Volcanic ash melting under conditions relevant to ash turbine interactions
Wenjia Song, Yan Lavalleé, Kai-Uwe Hess, Ulrich Kueppers, Corrado Cimarelli & Donald B. Dingwell
Nature Communications 2016
http://www.nature.com/ncomms/2016/160302/ncomms10795/full/ncomms10795.html

Kontakt:
Prof. Dr. D. B. Dingwell
dingwell@lmu.de
Telefon: +49 (0) 89 / 2180-4136
Fax: +49 (0)89 / 2180-4176
http://www.mineralogie.geowissenschaften.uni-muenchen.de/personen/head/dingwell/...

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie