Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temperaturanstieg im Permafrost erhöht Freisetzung des Klimagases Methan

30.03.2009
Untersuchungen am Alfred-Wegener-Institut zeigen, dass Methan bildende Mikroorganismen auf Klimaänderungen reagieren

Höhere Temperaturen in arktischen Dauerfrostböden verändern die Lebensgemeinschaft Methan bildender Mikroorganismen und führen zu einer erhöhten Methanfreisetzung. Zu diesem Ergebnis kommen Mikrobiologen aus dem Alfred-Wegener-Institut in einer aktuellen Veröffentlichung der Zeitschrift "Environmental Microbiology".

Die Wissenschaftler konnten erstmals Permafrost aus dem Meeresboden der Laptewsee untersuchen, einem flachen Schelfmeer vor der Küste Sibiriens. Durch die Überflutung mit relativ warmem Meerwasser ist dieser so genannte "submarine Permafrost" etwa 10 Grad Celsius wärmer als der Permafrost an Land. Er eignet sich deshalb besonders gut, um Veränderungen in Dauerfrostböden bei anhaltender Erwärmung der Erdatmosphäre zu erforschen.

"Wenn die Dauerfrostböden sich erwärmen oder sogar tauen, könnte das dramatische Konsequenzen für das weltweite Klimageschehen haben", verdeutlicht der Mikrobiologe Dr. Dirk Wagner von der Forschungsstelle Potsdam des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft die Bedeutung der Permafrostforschung. "Sie bedecken derzeit etwa 25 Prozent der Landfläche unserer Erde und speichern riesige Mengen an organischem Kohlenstoff."

Unter Ausschluss von Sauerstoff und damit unter Bedingungen, wie sie aufgrund der Wassersättigung im Permafrost typisch sind, bildet sich beim Abbau von organischem Kohlenstoff das Klimagas "Methan". Verantwortlich für die Bildung von Methan sind spezielle Mikroorganismen, die als methanogene Archaeen bezeichnet werden. "Wie viel Kohlenstoff umgesetzt und wie viel Methan dementsprechend gebildet wird, hängt von der Stoffwechselaktivität der Organismen und von der Zusammensetzung der mikrobiellen Gemeinschaft ab", erläutert Wagner. "Deshalb beschäftigen wir uns intensiv mit der Frage, wie sich diese beiden Parameter mit steigender Temperatur im Permafrost verändern."

Bereits in früheren Untersuchungen wiesen die Potsdamer Wissenschaftler nach, dass Mikroorganismen selbst in tief gefrorenen Permafrostablagerungen bei Temperaturen um minus 7 Grad Celsius Methan bilden. Werden die Temperaturen experimentell um wenige Grad erhöht, so erhöht sich auch die Stoffwechselaktivität der Organismen und damit die Methanproduktion im Permafrost. Bisher war jedoch nicht geklärt, ob die Lebensgemeinschaften Methan bildender Mikroorganismen sich überhaupt dauerhaft an höhere Temperaturen in arktischen Dauerfrostböden anpassen können. Diesen Nachweis haben die Potsdamer Wissenschaftler durch ihren Vergleich von terrestrischen und submarinen Permafrostablagerungen nun erstmals erbracht.

Der submarine Permafrost hat sich in einer ehemaligen Landmasse entwickelt, die durch den Meeresspiegelanstieg nach der letzten Eiszeit überflutet wurde. Es handelt sich also ursprünglich ebenfalls um terrestrische Permafrostablagerungen. Doch im Gegensatz zum heutigen terrestrischen Permafrost, der eine Durchschnittstemperatur von minus 12 Grad Celsius aufweist, ist der submarine Permafrost durch das relativ warme Meerwasser bereits auf etwa minus 2 Grad Celsius erwärmt worden. Indem sie die an der Methanbildung beteiligten Mikroorganismengemeinschaften in beiden Permafrostgebieten verglichen, konnten Wagner und sein Team zeigen, dass sich die Zusammensetzung der Methan bildenden Mikroben im submarinen Permafrost deutlich von der im terrestrischen Permafrost unterscheidet. Die Lebensgemeinschaft der Mikroorganismen kann sich demnach gut und dauerhaft auf höhere Temperaturen einstellen.

"Unsere Studien, die wir seit 10 Jahren im Umfeld der Russisch-Deutschen Forschungsstation Samoylow in der sibirischen Arktis betreiben, zeigen sehr deutlich", fasst Wagner die Erkenntnisse seiner langjährigen Arbeit zusammen, "dass die Lebensgemeinschaften der Mikroorganismen sehr flexibel auf Klimaänderungen reagieren. Und selbst wenn die Böden noch tief gefroren sind, erhöht sich die Stoffwechselaktivität Methan bildender Mikroben mit steigender Temperatur. Für uns ist das ein sicheres Indiz dafür, dass die zu beobachtende Erwärmung der Atmosphäre in den riesigen Permafrostregionen der Erde bereits heute zu einer erhöhten Freisetzung des Treibhausgases Methan führt."

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unter hohem Druck elastisch: Bayreuther Forscher erschließen Zusammensetzung des Erdmantels
30.03.2017 | Universität Bayreuth

nachricht Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten