Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temperaturanstieg im Permafrost erhöht Freisetzung des Klimagases Methan

30.03.2009
Untersuchungen am Alfred-Wegener-Institut zeigen, dass Methan bildende Mikroorganismen auf Klimaänderungen reagieren

Höhere Temperaturen in arktischen Dauerfrostböden verändern die Lebensgemeinschaft Methan bildender Mikroorganismen und führen zu einer erhöhten Methanfreisetzung. Zu diesem Ergebnis kommen Mikrobiologen aus dem Alfred-Wegener-Institut in einer aktuellen Veröffentlichung der Zeitschrift "Environmental Microbiology".

Die Wissenschaftler konnten erstmals Permafrost aus dem Meeresboden der Laptewsee untersuchen, einem flachen Schelfmeer vor der Küste Sibiriens. Durch die Überflutung mit relativ warmem Meerwasser ist dieser so genannte "submarine Permafrost" etwa 10 Grad Celsius wärmer als der Permafrost an Land. Er eignet sich deshalb besonders gut, um Veränderungen in Dauerfrostböden bei anhaltender Erwärmung der Erdatmosphäre zu erforschen.

"Wenn die Dauerfrostböden sich erwärmen oder sogar tauen, könnte das dramatische Konsequenzen für das weltweite Klimageschehen haben", verdeutlicht der Mikrobiologe Dr. Dirk Wagner von der Forschungsstelle Potsdam des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft die Bedeutung der Permafrostforschung. "Sie bedecken derzeit etwa 25 Prozent der Landfläche unserer Erde und speichern riesige Mengen an organischem Kohlenstoff."

Unter Ausschluss von Sauerstoff und damit unter Bedingungen, wie sie aufgrund der Wassersättigung im Permafrost typisch sind, bildet sich beim Abbau von organischem Kohlenstoff das Klimagas "Methan". Verantwortlich für die Bildung von Methan sind spezielle Mikroorganismen, die als methanogene Archaeen bezeichnet werden. "Wie viel Kohlenstoff umgesetzt und wie viel Methan dementsprechend gebildet wird, hängt von der Stoffwechselaktivität der Organismen und von der Zusammensetzung der mikrobiellen Gemeinschaft ab", erläutert Wagner. "Deshalb beschäftigen wir uns intensiv mit der Frage, wie sich diese beiden Parameter mit steigender Temperatur im Permafrost verändern."

Bereits in früheren Untersuchungen wiesen die Potsdamer Wissenschaftler nach, dass Mikroorganismen selbst in tief gefrorenen Permafrostablagerungen bei Temperaturen um minus 7 Grad Celsius Methan bilden. Werden die Temperaturen experimentell um wenige Grad erhöht, so erhöht sich auch die Stoffwechselaktivität der Organismen und damit die Methanproduktion im Permafrost. Bisher war jedoch nicht geklärt, ob die Lebensgemeinschaften Methan bildender Mikroorganismen sich überhaupt dauerhaft an höhere Temperaturen in arktischen Dauerfrostböden anpassen können. Diesen Nachweis haben die Potsdamer Wissenschaftler durch ihren Vergleich von terrestrischen und submarinen Permafrostablagerungen nun erstmals erbracht.

Der submarine Permafrost hat sich in einer ehemaligen Landmasse entwickelt, die durch den Meeresspiegelanstieg nach der letzten Eiszeit überflutet wurde. Es handelt sich also ursprünglich ebenfalls um terrestrische Permafrostablagerungen. Doch im Gegensatz zum heutigen terrestrischen Permafrost, der eine Durchschnittstemperatur von minus 12 Grad Celsius aufweist, ist der submarine Permafrost durch das relativ warme Meerwasser bereits auf etwa minus 2 Grad Celsius erwärmt worden. Indem sie die an der Methanbildung beteiligten Mikroorganismengemeinschaften in beiden Permafrostgebieten verglichen, konnten Wagner und sein Team zeigen, dass sich die Zusammensetzung der Methan bildenden Mikroben im submarinen Permafrost deutlich von der im terrestrischen Permafrost unterscheidet. Die Lebensgemeinschaft der Mikroorganismen kann sich demnach gut und dauerhaft auf höhere Temperaturen einstellen.

"Unsere Studien, die wir seit 10 Jahren im Umfeld der Russisch-Deutschen Forschungsstation Samoylow in der sibirischen Arktis betreiben, zeigen sehr deutlich", fasst Wagner die Erkenntnisse seiner langjährigen Arbeit zusammen, "dass die Lebensgemeinschaften der Mikroorganismen sehr flexibel auf Klimaänderungen reagieren. Und selbst wenn die Böden noch tief gefroren sind, erhöht sich die Stoffwechselaktivität Methan bildender Mikroben mit steigender Temperatur. Für uns ist das ein sicheres Indiz dafür, dass die zu beobachtende Erwärmung der Atmosphäre in den riesigen Permafrostregionen der Erde bereits heute zu einer erhöhten Freisetzung des Treibhausgases Methan führt."

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy