Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff im Boden sorgt für saubere Luft

19.08.2011
Nitrithaltiger Ackerboden bildet eine Quelle für Hydroxylradikale, die die Atmosphäre von Schadstoffen reinigen

Überdüngung schadet der Umwelt in vielerlei Hinsicht. Auf unerwartete Weise kann Stickstoffdünger ihr aber auch nutzen. Und auch sauren Böden, die das Waldsterben begünstigen, lässt sich offenbar etwas Positives abgewinnen.

Wie Forscher der Abteilung Biogeochemie des Max-Planck-Instituts für Chemie in Mainz festgestellt haben, stärkt Stickstoffdünger nämlich indirekt die Selbstreinigungskraft der Atmosphäre. Ihrer Studie zufolge entsteht in gedüngtem Ackerboden salpetrige Säure, die in die Atmosphäre entweicht – und zwar desto mehr je saurer der Boden ist.

In der Luft bewirkt die salpetrige Säure die Bildung von Hydroxylradikalen, die Schadstoffe oxidieren, so dass sie ausgewaschen werden. Bislang hatten Geowissenschaftler diesen Effekt nicht berücksichtigt. Die Lücke haben die Max-Planck-Forscher nun geschlossen.

Unsere Luft reinigt sich teilweise selbst, indem Schadstoffe durch Hydroxylradikale oxidiert und durch Regen ausgewaschen werden. Forscher des Max-Planck-Instituts in Mainz und Kollegen aus Peking haben jetzt herausgefunden, woher ein Großteil der salpetrigen Säure stammt, die neben Ozon als Quelle für Hydroxylradikale wirkt. Demnach wird die Säure in beachtlichen Mengen vom Erdboden an die Atmosphäre abgegeben. In stickstoffhaltigen Böden entsteht die Säure aus Nitrit-Ionen, die wiederum aus mikrobiologischen Umwandlungen von Ammonium- und Nitrat-Ionen stammen. Je saurer der Boden ist und je mehr Nitrit er enthält, umso mehr salpetrige Säure wird freigesetzt. Über diesen Weg entweicht also auch ein Teil des Stickstoffs aus gedüngten Ackerböden in die Luft.

In der neuesten Ausgabe des Forschungsmagazins Science beschreiben die Mainzer Forscher, wie sie den bisher unbeachteten Pfad im Stickstoffkreislauf nachgewiesen haben. Sie maßen die Konzentration an HONO – so lautet eine chemische Darstellung für gasförmige salpetrige Säure –, die aus einem definierten Volumen Ackerboden entweicht. Dazu setzen sie einer Bodenprobe Nitrit zu und veränderten anschließend den Wassergehalt. Die dabei freigesetzte HONO-Menge stimmt gut mit der Menge überein, die die Forscher in Berechnungen der Säure-Basen- und Löslichkeitsgleichgewichte abgeschätzt hatten. Damit konnten sie auch die hohen HONO-Werte erklären, die in früheren Untersuchungen über gedüngten landwirtschaftlichen Böden gemessen wurden.

Lange war die Quelle der beobachteten großen HONO-Konzentrationen in der bodennahen Atmosphäre ein Rätsel geblieben. „Böden sind sehr komplexe Systeme, in denen zahlreiche chemische Substanzen und Mikroorganismen miteinander wechselwirken“, sagt Hang Su, Erstautor der Veröffentlichung. „Den Austausch von salpetriger Säure zwischen Boden und Luft scheint bisher niemand untersucht zu haben.“

Die Emission von salpetriger Säure aus dem Erdboden hat den Forschern zufolge nicht nur lokale, sondern auch globale Bedeutung für die Luftqualität und den Stickstoffkreislauf. „In interdisziplinärer Zusammenarbeit mit Boden- und Klimaforschern wollen wir daher als nächstes den Effekt für verschiedene Bodentypen und Umgebungsbedingungen quantifizieren“, sagt Forschungsgruppenleiter Ulrich Pöschl. Die Ergebnisse dieser Untersuchungen sollen dann in ein globales Modell einfließen.

Die Max-Planck-Forscher vermuten nämlich, dass die Freisetzung von HONO aus Ackerböden aufgrund vermehrten Einsatzes von Düngemitteln, zunehmender Bodenversauerung, und klimabedingter Temperaturerhöhungen besonders in Entwicklungsländern deutlich ansteigen könnte. Dadurch werden voraussichtlich mehr Hydroxylradikale entstehen, die die Oxidationskraft der Luft erhöhen.

Über das Max-Planck-Institut für Chemie
Am Max-Planck-Institut für Chemie (260 Mitarbeiter) werden die Erde und ihre Atmosphäre in unterschiedlichen Größenbereichen, vom Nanopartikel bis zum Planeten und von der Ökosystemdynamik bis zum globalen Klimawandel erforscht. Drei Abteilungen untersuchen das Erdsystem in Feldstudien, unter Laborbedingungen und mit Hilfe von computergestützten Modellsystemen. Somit trägt das Institut zum grundlegenden Verständnis der natürlichen Ressourcen der Erde bei und liefert notwendige Methoden für deren nachhaltige Nutzung und den Schutz der Umwelt. Mit einer International Research School und einem E-Learning Programm beteiligt sich das Institut auch aktiv an der Wissenschaftsausbildung. Das Max-Planck-Institut für Chemie beteiligt sich aktiv am Veranstaltungsprogramm 2011 zur Stadt der Wissenschaft in Mainz. Im nächsten Jahr feiert das Institut sein 100-jähriges Bestehen.

Weitere Informationen: http://www.mpic.de

Originalveröffentlichung:
Hang Su, Yafang Cheng, Robert Oswald, Thomas Behrendt, Ivonne Trebs, Franz X. Meixner, Meinrat O. Andreae, Peng Cheng, Yuanhang Zhang & Ulrich Pöschl
Soil nitrite as a source of atmospheric HONO and OH radicals
Science, 18 August 2011
Kontakt:
Dr. Hang Su
Max-Planck-Institut für Chemie, Mainz
Tel.: +49 6131-305 426
E-Mail: h.su@mpic.de
Dr. Ulrich Pöschl
Max-Planck-Institut für Chemie, Mainz
Tel.: +49 6131-305 422
E-Mail: u.poschl@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Weitere Informationen:
http://www.mpic.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie