Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wir stammen von Steinen ab – oder: Woher nahm das erste Leben die Energie?

22.02.2013
Forscher von der Heinrich-Heine-Universität Düsseldorf und vom University College London stellen in der renommierten Zeitschrift Cell ein Modell vor, wie sich die frühesten Formen des Lebens in der unmittelbaren Umgebung von unterseeischen Hydrothermalquellen entwickelt haben können. Kompartimente im Gestein der Quellen können die Prototypen für Zellen gewesen sein.

Der Schlüssel zum Leben ist Energie: Lebende Organismen benötigen hiervon große Mengen, um ihren Stoffwechsel anzutreiben und organische Moleküle zu produzieren. Bei den Frühformen des Lebens war der Energiebedarf nochmals deutlich höher als bei modernen Zellen, weil jenen ersten Lebensformen Enzyme fehlten, die auf katalytischem Weg eine deutlich effizientere Stoffumwandlungen ermöglichen.

Der Schlüssel zur Energiebereitstellung ist, auch heute noch, ein Konzentrationsgefälle von Ionen über eine begrenzende Membran hinweg.

Prof. Dr. William Martin (Heinrich-Heine-Universität Düsseldorf, Institut für Molekulare Evolution) und Dr. Nick Lane (University College London, Department of Genetics, Evolution and Environment) erläutern in ihrem Artikel „The origin of membrane bioenergetics“ in der Zeitschrift Cell, wie in frühester Zeit die ersten Zellen geochemische Energie in biologische Ernergie überführen konnten. Die anorganischen Wände von natürlich entstehenden mineralischen Kompartimenten (winzigen Poren) in Hydrothermalquellen am Boden der Ur-Ozeane sind der Schlüssel.

Heutige Hydrothermalquellen weisen eben solche kleinen Kammern, etwa in der Größe einer biologischen Zelle, auf. Wo Wasserstoff-angereichertes alkalisches Wasser aus dem Erdinnern auf neutrales, ozeanisches Wasser trifft, resultiert ein Wasserstoff-Konzentrationsgefälle, ein Ionen-Gradienten, über diese Wände.

Just solche Gradienten werden heute von allen Lebewesen für die Energiegewinnung genutzt. Aber heutige Lebewesen müssen diese Gradienten im Zuge der Atmung aufbauen, alkalische Hydrothermalquellen liefern die Gradienten umsonst. Diese Energiequelle konnten die Vorfahren der ersten Lebewesen anzapfen, um organische Moleküle, Grundbausteine des Lebens wie Aminosäuren und Nukleinsäuren, zu bilden. Kurzum: Diese mineralische Protozellen können die ersten Lebensformen gewesen sein.

Es fehlt der Schritt in die Freiheit: Hierzu war die „Erfinding“ einer organischen Zellmembran und einer Zellwand, die dem Innendruck der Zelle standhält, erforderlich. Nur so konnten diese Zellen aus ihrem anorganischen Gehäuse entkommen, und als freilebende Zellen im Ozean leben.

Die Autoren erkennen ein sehr ähnliches chemisches Verhalten auch bei bestimmten, heute noch vorkommenden Bakterien und Archaeen, die in ähnlich extremen Umgebungen leben, wie sie in den Urmeeren vor Jahrmilliarden geherrscht haben. Solche Acetat- und Methan-bildende Prokaryoten (Zellen ohne Zellkern) sind demnach direkte Nachfahren der allerersten Lebensformen.

Vor 150 Jahren tat sich die Menschheit schwer mit der Vorstellung Darwins, dass wir alle mit Affen verwandt sind.

„Schauen wir weiter zurück in die Vergangenheit,“ so Dr. Lane und Prof. Martin, „so gehören letztendlich auch Gesteine zu unserem Stammbaum“. „Auf der frühen Erde gab es nur Gestein und Wasser“, so William Martin weiter, und: „Warum sollte also die Feststellung überraschen, dass wir von Steinen abstammen? Wir konnten Verbindungen zwischen einerseits den geologischen Gegebenheiten auf der frühen Erde, und andererseits bestimmten Gruppen der heute noch lebenden Zellen knüpfen. Eine solche Verbindung war bisher noch nicht bekannt.“

Nick Lane, William F. Martin, „The origin of membrane bioenergetics”, Cell – Vol. 151, Issue 7, 21. Dezember 2012

Kontakt:
Prof. Dr. William Martin
Institut für Molekulare Evolution
Tel.: 0211-81-13011
E-Mail: w.martin@hhu.de

Dr. Victoria Meinschäfer | idw
Weitere Informationen:
http://www.hhu.de
http://www.sciencedirect.com/science/article/pii/S0092867412014389

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Bisher älteste bekannte Sauerstoffoase entdeckt
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht Wetteranomalien verstärken Meereisschwund
16.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten