Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotation der Erde erstmals unmittelbar gemessen

20.12.2011
Einer Gruppe um Forscher der Technischen Universität München (TUM) ist es als ersten gelungen, mit Labormessungen die Schwankungen der Erdachse zu bestimmen.

Sie haben dazu in einem Untergrundlabor den weltweit stabilsten Ringlaser konstruiert, an dessen Verhalten sie Veränderungen der Erdrotation ablesen. Bislang können Wissenschaftler auf die Wanderungen der Polachse nur indirekt über die Richtung zu Fixpunkten im All schließen. Die Lage der Achse und die Drehgeschwindigkeit zu messen, ist Voraussetzung für die exakte Bestimmung einzelner Punkte auf der Erde, etwa für moderne Navigationssysteme. Die American Physical Society hat die Arbeit als Exceptional Research Spotlight eingestuft.

Die Erde schlingert. Wie bei einem Brummkreisel, den man antippt, schwankt die Lage ihrer Rotationsachse im Raum, weil die Gravitation von Sonne und Mond auf sie wirkt. Gleichzeitig ändert sich auch die Position der Rotationsachse auf der Erde permanent: Zum einen verursachen Ozeanbewegungen, Wind und Luftdruck eine Bewegung der Pole, die rund 435 Tage dauert – ein nach seinem Entdecker „Chandler Wobble“ getauftes Phänomen. Zum anderen ändert sich die Position im Laufe eines Jahres, weil die Erde auf einer elliptischen Bahn um die Sonne rast – der „Annual Wobble“. Die beiden Effekte ergeben eine unregelmäßige Wanderung der Erdachse auf einer kreisähnlichen Linie mit einem Radius von maximal sechs Metern.

Diese Schwankungen zu erfassen, ist entscheidend für ein zuverlässiges Koordinatensystem und damit für den Betrieb von Navigationssystemen oder die Vorhersage von Bahnen in der Raumfahrt. „Einen Punkt für die GPS-Ortung zentimetergenau zu bestimmen, ist ein hochdynamischer Vorgang – schließlich bewegen wir uns in unseren Breiten pro Sekunde um circa 350 Meter nach Osten“, sagt Prof. Karl Ulrich Schreiber, der in der Forschungseinrichtung Satellitengeodäsie der TUM das Projekt geleitet hat. Bislang sind weltweit 30 Radioteleskope im Einsatz, um die Lage der Achse im Raum und die Drehgeschwindigkeit der Erde in einem aufwendigen Prozess zu berechnen. Abwechselnd messen acht bis zwölf von ihnen jeden Montag und Donnerstag die Richtung zu bestimmten Quasaren. Die Wissenschaftler gehen davon aus, dass sich die Position dieser Galaxiekerne nicht ändert und sie deshalb als Fixpunkte dienen können. An dem Verfahren beteiligt ist das Geodätische Observatorium Wettzell, das die TU München und das Bundesamt für Kartographie und Geodäsie (BKG) betreiben.

Mitte der 90er Jahre haben sich Wissenschaftler von TUM und BKG gemeinsam mit Forschern der neuseeländischen University of Canterbury vorgenommen, eine Methode zu entwickeln, die eine weniger aufwendige und eine kontinuierliche Bestimmung des Chandler und des Annual Wobble ermöglicht. „Außerdem wollten wir mit einer Alternative systematische Fehler ausschließen“, sagt Schreiber. „Schließlich wäre es ja möglich, dass die angenommenen Fixpunkte gar keine sind.“ Die Wissenschaftler hatten die Idee, zu diesem Zweck einen Ringlaser zu konstruieren, wie er in Flugzeugen zur Navigation verwendet wird – nur millionenfach genauer. „Damals sind wir beinahe ausgelacht worden, weil dies kaum jemand für möglich hielt“, erzählt Schreiber.

Doch Ende der 90er Jahre ging auf dem Gelände des Wettzeller Observatoriums der heute weltweit stabilste Ringlaser in Bau. Zwei Lichtstrahlen durchlaufen in entgegengesetzten Richtungen eine quadratisch angeordnete Bahn mit Spiegeln in den Ecken, die in sich geschlossen ist (daher die Bezeichnung Ringlaser). Dreht sich eine solche Apparatur, hat der Laserstrahl in der Drehrichtung einen längeren Weg als der gegenläufige. Die Strahlen passen daraufhin ihre Wellenlänge an, die optische Frequenz ändert sich. Aus dieser Differenz kann man auf die Drehgeschwindigkeit schließen. In Wettzell dreht sich nicht der Ringlaser selbst, sondern nur die Erde. Die vier mal vier Meter lange Konstruktion ist in einem massiven Betonpfeiler verankert, der wiederum in rund sechs Metern Tiefe auf massiven Fels der Erdkruste gegründet ist, damit ausschließlich die Erdrotation auf die Laserstrahlen wirkt.

Wie die Drehung der Erde das Licht beeinflusst, ist abhängig vom Standort des Lasers: „Stünden wir am Pol, wären Drehachse der Erde und Drehachse des Lasers identisch und wir würden die Drehgeschwindigkeit eins zu eins sehen“, erklärt Schreiber. „Am Äquator dagegen würde der Lichtstrahl gar nicht merken, dass sich die Erde dreht.“ Die Wissenschaftler müssen deshalb die Position des Wettzeller Lasers auf dem 49. Breitengrad berücksichtigen. Ändert sich nun die Achse der Erdrotation, ändert sich auch das, was die Forscher von der Drehgeschwindigkeit sehen. Die Veränderungen im Verhalten des Lichts zeigen also die Schwankungen der Erdachse an.

„Das Prinzip ist einfach“, sagt Schreiber. „Die große Schwierigkeit bestand darin, den Laser so stabil zu halten, dass wir ein solch schwaches geophysisches Signal störungsfrei messen können – und das über Monate.“ Das heißt, die Wissenschaftler mussten Änderungen in den Frequenzen ausschließen, die nicht von der Drehbewegung der Erde, sondern von Umwelteinflüssen wie Luftdruck und Temperatur herrühren. Ihre wichtigsten Instrumente: eine Glaskeramikplatte und eine Druckkabine. Auf die neun Tonnen schwere Platte aus Zerodur haben die Forscher den Ringlaser montiert, auch die balkenartigen Halterungen wurden aus dem Werkstoff gefertigt. Dieser hat den großen Vorteil, auf Temperaturänderungen kaum zu reagieren. Geschützt wird die Konstruktion durch die Druckkabine. Sie registriert Änderungen des Luftdrucks und der Temperatur von 12 Grad und steuert automatisch gegen. Um solche Einflüsse von vornherein gering zu halten, liegt das Labor in fünf Metern Tiefe, nach oben hin isoliert mit Schichten aus Styrodur und Ton sowie einem vier Meter hohen Erdhügel. Die Wissenschaftler müssen durch einen 20 Meter langen Tunnel mit fünf Kühlraumtüren und einer Schleuse gehen, um zum Laser zu gelangen.

Unter diesen Bedingungen ist es den Forschern gelungen, die aus den Messungen der Radioteleskope stammenden Daten zur Ausprägung des Chandler Wobble und des Annual Wobble zu bestätigen. Ihr nächstes Ziel ist nun zum einen, die Genauigkeit der Konstruktion so zu erhöhen, dass sie Veränderungen der Erdrotationsgeschwindigkeit eines einzelnen Tages erfassen kann. Zum anderen wollen sie Ringlaser für einen dauerhaften Betrieb rüsten, bei dem die Apparatur auch über Jahre keine Abweichungen produziert. Karl Ulrich Schreiber: „Salopp gesagt: Wir wollen künftig mal eben in den Keller gehen können und nachschauen, wie schnell sich die Erde gerade dreht.“

Publikation:
Schreiber, K. U.; Klügel, T.; Wells, J.-P. R.; Hurst, R. B.; Gebauer, A.: How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope; Physical Review Letters, Vol. 107, Nr. 17, EID 173904, American Physical Society, ISSN 0031-9007, DOI: 10.1103/PhysRevLett.107.173904, 2011
Exceptional Research Spotlight der American Physical Society:
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.107.173904
Ansprechpartner:
Prof. Karl Ulrich Schreiber
Technische Universität München / Bundesamt für Kartographie und Geodäsie
Forschungseinrichtung Satellitengeodäsie
Telefon: +49 (0) 9941 / 603 113
E-Mail: schreiber@fs.wettzell.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.fs.wettzell.de/
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.107.173904

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen
26.04.2017 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Flechten aus dem Bernsteinwald
25.04.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie