Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Spurensuche im arktischen Sediment

18.01.2010
Ölquellen und die Tiefen der Erdkruste sind wohl der Ursprung hitzeliebender Bakterien im arktischen Meeressediment.

Zu diesem Ergebnis hat ein vom Wissenschaftsfonds FWF unterstütztes Projekt beigetragen, in dessen Mittelpunkt molekularbiologische Methoden zur Untersuchung solcher "fehlplatzierten" Bakterien stehen. Die Möglichkeit, dass auch molekularbiologische Methoden Hinweise auf Erdölvorkommen liefern können, gibt dem Projekt eine spannende wirtschaftliche Facette.

Vor mehr als 50 Jahren fand man sie - woher sie kommen, blieb rätselhaft: Bakterien, die sich eigentlich erst ab 50 Grad Celsius so richtig wohlfühlen, aber im arktischen Meeresbodensediment vor Spitzbergen bei Temperaturen um den Gefrierpunkt leben. Dabei ist "leben" relativ zu verstehen, denn die gefundenen Bakterien zeigen dort wenig Neigung zu Stoffwechselaktivität und fristen ihr Dasein als Sporen, einer Überdauerungsform. Doch gerade ihr Stoffwechsel wäre eigentlich besonders interessant, sind einige doch als "Sulfatreduzierende Mikroorganismen" (SRMs) zum Abbau organischer Materie bei fehlendem Sauerstoff fähig. Und genau diese Fähigkeit gab erste Hinweise auf eine mögliche Herkunft dieser mikrobiellen Migranten.

AUS DER TIEFE
"An bestimmten Orten unseres Planeten herrschen Lebensbedingungen, die wir als unwirtlich bezeichnen würden, bei denen sich andere aber wohlfühlen. Thermophile SRMs lieben Temperaturen über 50 Grad Celsius und die Abwesenheit von Sauerstoff. Unter solchen Umständen können diese Mikroorganismen organisches Material abbauen", erläutert Projektleiter Dr. Alexander Loy vom Department für Mikrobielle Ökologie der Universität Wien und ergänzt: "Unterseeische Ölquellen, aber auch Lebensräume tief in der Erdkruste bieten solche Plätze und waren unsere erste Vermutung über die Herkunft thermophiler SRMs in arktischem Sediment."

Zur Klärung dieser Hypothese mussten Dr. Loy und sein Team zunächst entsprechende molekularbiologische Methoden anwenden, die eine Bestimmung der Verwandtschaften der thermophilen Bakterien erlaubten. Im Mittelpunkt der vom Wissenschaftsfonds FWF unterstützten Arbeit stand dabei die sogenannte 16S rRNA, ein Bestandteil bakterieller "Proteinfabriken". Aufgrund ihrer essenziellen Bedeutung für das Leben der Bakterien wird die 16S rRNA im Laufe der Evolution nur wenig verändert. Und diese wenigen Veränderungen erlauben Rückschlüsse auf die Verwandtschaften: Teilen zwei Arten eine dieser Veränderungen, so ist eine engere Verwandtschaft anzunehmen.

VERWANDTSCHAFT IN PROZENTEN
Der Erfolg dieser Arbeit stellte sich rasch ein und im September 2009 konnten erste Fakten vom Team um Dr. Loy gemeinsam mit Daten von KollegInnen des Bremer Max-Planck-Instituts für Marine Mikrobiologie sowie der Universitäten in North Carolina (USA) und Aarhus (Dänemark) in SCIENCE veröffentlicht werden. Zu den Ergebnissen dieser "Ahnenforschung" meint Dr. Loy: "Die engsten Verwandten der thermophilen Bakterien aus der Arktis kommen aus Erdölvorkommen in der Nordsee. Bis zu 96 Prozent der 16S rRNA stimmten zwischen diesen Arten und jenen aus dem arktischen Sediment überein." Das war ein erster Hinweis.

Ein weiterer wurde durch eine Analyse der Anzahl vorhandener Endosporen geliefert, die von Dr. Loys internationalen KollegInnen durchgeführt wurde. Denn aufgrund der gefundenen Anzahl wurde berechnet, dass pro Jahr und Quadratmeter 100 Mio. Bakteriensporen abgelagert werden. Das war der zweite wesentliche Hinweis auf den Ursprung dieser Bakterien. Offensichtlich muss dort eine so große Population existieren, dass eine kontinuierliche Versorgung möglich ist. Dafür kamen eigentlich nur Ölvorkommen und Ökosysteme der Erdkruste in Frage, in denen hohe Temperaturen ideale Lebensbedingungen für hitzeliebende Bakterien bieten.

Sollten diese thermophilen SRMs in arktischen Gewässern tatsächlich ihren Ursprung in unterseeischen Erdölquellen haben, dann würden die angewendeten Methoden auch einen Beitrag zur Ölexploration leisten können. Ein Aspekt, der für Dr. Loy im Rahmen seines FWF-Projektes nicht im Vordergrund steht aber ein durchaus praktischer "Nebeneffekt" sein könnte.

Bild und Text ab Montag, 18. Jänner 2010, ab 09.00 Uhr MEZ verfügbar unter:
http://www.fwf.ac.at/de/public_relations/press/pv201001-de.html
Originalartikel:
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed" C. Hubert, A. Loy, M. Nickel, C. Arnosti, C. Baranyi, V. Brüchert, T. Ferdelman, K. Finster, F. M. Christensen, J. R. de Rezende, V. Vandieken, and B. B. Jørgensen. Science, 18. September 2009, VOL 325, doi: 10.1126/science.1174012
Wissenschaftlicher Kontakt:
Dr. Alexander Loy
Department für Mikrobielle Ökologie
Universität Wien
T +43 / 1 / 4277 - 54207
E loy@microbial-ecology.net
W www.microbial-ecology.net
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at

Michaela Fritsch | PR&D
Weitere Informationen:
http://www.microbial-ecology.net
http://www.fwf.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Auf der Suche nach Hochtechnologiemetallen in Norddeutschland
26.06.2017 | Jacobs University Bremen gGmbH

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie

Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation

26.06.2017 | Medizin Gesundheit