Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meteoritenkrater im Labor

18.07.2013
Verbundprojekt mit Schwerpunkt an der Universität Freiburg geht in die zweite Förderperiode

Sie hat vor drei Jahren ihre Arbeit aufgenommen, zählt inzwischen zu den weltweit führenden Einrichtungen auf dem Gebiet der Kraterforschung und hat nun Fördermittel für drei weitere Jahre eingeworben:


Die mathematische Simulation eines Meteoriteneinschlags mit der Schädigung des Krateruntergrundes.
Foto: Kai Wünnemann, MfN Berlin

Die Gruppe des MEMIN-Projekts erhält von der Deutschen Forschungsgemeinschaft (DFG) 1,6 Millionen Euro, verteilt auf die federführende Universität Freiburg, die Universitäten in Jena, München und Münster, das Fraunhofer-Institut für Kurzzeitdynamik in Freiburg, das Museum für Naturkunde Berlin und das DESY Hamburg sowie Kooperationspartner in Beauvais/Frankreich und Stony Brook/USA. MEMIN steht für „Multidisciplinary Experimental and Modeling Impact crater research Network“ und verfolgt das Ziel, die Prozesse bei der Entstehung von Meteoritenkratern im Detail zu verstehen. Sprecher ist der Geologe Prof. Dr. Thomas Kenkmann von der Universität Freiburg.

Seit Jahrmilliarden prägen Meteoriteneinschläge die Oberflächen aller bekannten Planeten, Monde, Asteroiden und Kometen im Sonnensystem. So wird etwa die Entstehung des Erdmondes auf eine gewaltige Kollision mit der frühen Erde erklärt. Das Aussterben der Dinosaurier lässt sich ebenfalls auf einen Meteoriteneinschlag zurückführen. Kosmische Einschläge sind auch heute für die Erde gefährlich. Eindrucksvoll wurde dies am 15. Februar 2013 in Erinnerung gerufen, als über der sibirischen Stadt Tscheljabinsk ein etwa 15 Meter großer Meteor beim Eindringen in die Atmosphäre explodierte und am gleichen Tag der 55 Meter große Asteroid „2012 DA14“ in nur 27.000 Kilometern Höhe an der Erde vorbeischrammte.

Die MEMIN-Gruppe erzeugt im Labor experimentelle Meteoriteneinschläge. Ein Leichtgasbeschleuniger bringt bis zu 1,2 Zentimeter große Stahlkugeln oder echte Meteoriten auf eine Geschwindigkeit von mehr als 25.000 Stundenkilometer. In weniger als einer Millisekunde entstehen durch die Energie, die beim Einschlag freigesetzt wird, Krater mit bis zu 40 Zentimeter Durchmesser. Moderne Hochgeschwindigkeitskameras und Drucksensoren zeichnen eine Vielzahl von Prozessen in Echtzeit auf.

Speziell entwickelte Partikelkollektoren fangen das ausgeworfene Material auf, so dass die Forscherinnen und Forscher es mit geologischen und mineralogischen Methoden untersuchen können. Die Daten dienen als Grundlage für Modelle, die die Kraterbildung simulieren und neue Einblicke in die Prozesse erlauben. Aufgrund der Dimension der experimentellen Krater ist es möglich, die Ergebnisse auf planetare Maßstäbe hochzurechnen.

Mit den neuen Fördermitteln wollen die Forscher zum Beispiel herausfinden, wie die Materialeigenschaften von typischen Gesteinen der Erdoberfläche die Kraterbildung beeinflussen. Im Mittelpunkt der Forschungsarbeiten sollen nun Kalksteine stehen, nachdem in der ersten Phase poröse Gesteine wie Sandstein, wassergesättigte Gesteine sowie solche mit nur sehr geringem Porenvolumen experimentell untersucht wurden. In den Mittelpunkt des Interesses rücken nun auch jene Prozesse, die sich in den ersten Nano- bis Mikrosekunden unmittelbar beim Aufschlag ereignen. Beim Kontakt des Projektils mit dem Gesteinskörper entstehen kurzfristig extreme Drücke und Temperaturen, die zur Aufschmelzung und Verdampfung der getroffenen Gesteine bis hin zur Plasmabildung führen können. Als Ergebnis wollen die Forscher ein deutlich vertieftes Verständnis der hochdynamischen und komplexen Verhältnisse beim Meteoriteneinschlag entwickeln – als wichtige Grundlage für erfolgreiche Abwehrstrategien.

Kontakt:
Prof. Dr. Thomas Kenkmann
Institut für Geo- und Umweltnaturwissenschaften
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6495, -6494
E-Mail: thomas.kenkmann@geologie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Polarstern ab heute unterwegs nach Spitzbergen, um Rolle der Wolken bei Erwärmung der Arktis zu untersuchen
24.05.2017 | Leibniz-Institut für Troposphärenforschung e.V. (TROPOS)

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten