Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Kopf auf die Füße gestellt:100 Jahre Kontinentaldrifttheorie

05.01.2012
/Die moderne Plattentektonik und das Bild der Erde/

Vor genau 100 Jahren, am 6. Januar 1912, stellte Alfred Wegener seine Theorie der Kontinentaldrift erstmals öffentlich vor.

Anlässlich eines Treffensder Geologischen Vereinigung im Frankfurter Senckenberg-Museum legte er seine Gedanken zum Urkontinent Pangaea dar, der auseinanderbrach und dessen einzelne Teile als heutige Kontinente über die Erde driften. 1915 erscheint sein Buch „Entstehung der Kontinente und Ozeane“, das 1922 in dritter Auflage in die Weltsprachen übersetzt wird und heute als Grundlegung der Theorie der Plattentektonik gilt.

Wegeners geniale Idee fand nicht nur Freunde, denn sie hatte den zentralen Nachteil, dass ihr der Motor fehlte, der Urkontinente auseinanderbrechen und riesige Kontinentalmassen über die Erdoberfläche verschieben konnte. Tatsächlich wurde erst durch die Seismologie in den 1950ern und durch Forschungsbohrungen auf den Ozeanen in den 1960er Jahren die Fundamente für die Plattentektonik gelegt – zugleich aber wurde Wegeners bahnbrechende Theorie vom Kopf auf die Füße gestellt.

/Seismologische Erkenntnisse/

Erdbeben sind nicht nur furchtbare Naturkatastrophen, sie sind zugleich ein Fenster in das Erdinnere. Es waren die Geophysiker Wadati und Benioff, die unabhängig voneinander 1954 die systematische Anordnung von Erdbeben an den Stellen entdeckten, die wir heute als Plattengrenzen kennen. „/Über 90% der seismischen Energie weltweit wird an den Plattengrenzen freigesetzt/“, sagt dazu Professor Michael Weber, Chefseismologe am Deutschen GeoForschungsZentrum GFZ. „/Wir nutzen diese Beben zur tomographischen Durchleuchtung des Erdkörpers./“ Mit modernen Verfahren der wissenschaftlichen Seismologie kann man sogar rekonstruieren, wie schnell die Kontinente wanderten: den Rekord hält Indien, das sich mit 20 Zentimetern pro Jahr vor rund 140 Millionen Jahren auf dem Weg von Ost-Gondwana nach Eurasien machte.

/Bohren in die Ozeanböden/

Der eigentliche Durchbruch kam aber erst, als diese Erkenntnisse mit Forschungsergebnissen aus den großen Ozeanbohrprogrammen der sechziger Jahre zusammengeführt wurde. Zuvor hatte man mit magnetischer Ozeanbodenvermessung und Topographie des Meeresbodens die mittelozeanischen Rücken entdeckt und beiderseits der mittelozeanischen Rücken eine Magnetisierungsrichtung der Gesteine in parallelen Streifen.

Die jetzt gewonnenen Bohrkerne zeigten: Kein Stück des erbohrten Ozeanbodens war älter als 200 Millionen Jahre und damit entschieden jünger, als Wegener angenommen hatte. Kontinentale Gesteine hingegen erreichen mehr als vier Milliarden Jahre Alter. Zweitens ergab sich, dass in unmittelbarer Nähe der mittelozeanischen Rücken der Ozeanboden sehr jung ist. Mit zunehmender Entfernungvon diesen untermeerischen Gebirgen weisen die Gesteine zunehmendes Alter auf. Drittens sind Ozeanböden unterhalb der obersten Sedimentschicht durchweg magmatischen Ursprungs. „/Diese Ergebnisse ließen eigentlich nur eine Interpretation zu. Aus dem Erdinnern steigen an diesen Rücken heiße, flüssige Gesteine auf und drücken den Ozeanboden zur Seite weg/“, erläutert Dr. Ulrich Harms, der am GFZ das „Zentrum für Wissenschaftliches Bohren“ leitet.

„/Nicht die Kontinente driften, sondern ganze tektonische Platten, die die aus Ozeanböden, Kontinenten und oberstem Erdmantel bestehen/.“

/Aufsteigende Gesteine – der Motor der Plattentektonik/

Alle diese Befunde stellten in der zweiten Hälfte der sechziger Jahre Wegeners geniale Entdeckungen in den korrekten Zusammenhang und zugleich seine Theorie vom Kopf auf die Füße: nicht nur seine Annahmen zum Alter von Ozeanen und Kontinenten wurden komplett umgekehrt, auch die Vorstellung, dass die Kontinente durch die Ozeane pflügen, dreht sich dahingehend um, dass Kontinente und Ozeane als gemeinsamer oberer Teil der Lithosphärenplatten sich zusammen bewegen. Die Kontinente als leichteste Gesteine schwimmen sozusagen oben auf.

Diese tektonischen Platten bewegen sich, kollidieren miteinander, reiben aneinander vorbei oder driften auseinander. Alle diese Prozesse sind mit Erdbeben verbunden, die sich so als Teil des Gesamtprozesses erklären lassen. Aber was bringt schweres Gestein im Erdinnern zum Aufstieg? Die enorme Hitze, die sich im Erdkern und im Erdmantel befindet, stammt zum Teil noch aus der Entstehung der Erde, zum anderen aus dem radioktiven Zerfall von Elementen im Erdmantel. Das dadurch erhitzte Gestein steigt auf und setzt damit die Bewegung in Gang, die sich auf der Erdoberfläche als Verschiebung der Platten äußert. Wir kennen diesen Prozess heute als Plattentektonik, die das Wissenschaftsmagazin „New Scientist“ gleichberechtigt neben die Evolutionstheorie und die Relativitätstheorie stellt.

/Die leise Revolution in der Theorie der Tektonik/

Die klassische Auffassung der Tektonik als quasi mechanischer Prozess von der Bewegung und Kollision starrer Platten ist mittlerweile selbst in Auflösung begriffen. „/Neuere Erkenntnisse zeigen die Plattentektonik als ein sich selbst regulierendes System von Wechselwirkungen, in dem alle Subsysteme des Planeten Erde mitwirken/“, führt dazu Professor Onno Oncken aus. Der Direktor des Departments „Geodynamik“ am GFZ stellt
fest: „/Es handelt sich nicht um ein mechanisches System, sondern um komplexe, rückgekoppelte Prozesse/.“ Beispiel Klima: dass Hochgebirge einen entscheidenden Einfluss auf das Klima haben, ist verständlich.
Aber dass das Klima seinerseits die Tektonik steuert, ist eine neue
Erkenntnis: Die Anden beispielsweise entstehen durch die Kollision der Nazca-Platte mit Südamerika. Das feuchte Klima der Süd-Anden führt zum Abtragen von Gebirgsmaterial, das als Sediment im Pazifik landet. Die von Westen herankommende Nazca-Platte lagert dieses Gestein an der südamerikanischen Kruste an. Das aride Klima der Nord- und Zentral-Anden hingegen lässt kein Sediment entstehen, daher raspelt hier die Nazca-Platte hier die kontinentale Kruste ab. Die dabei stark erhöhte Reibungüberträgt ihrerseits eine Kraft, die das Andenplateau in die Höhe und Breite wachsen lässt. Das wiederum verstärkt den Regenschatten an der Westseite der Anden und verringert die Erosion zusätzlich.
Auch die klassische Vorstellung eines Faltengebirges als Resultat eines Zusammenstoßes musste in die Revision: „/Die Anden beispielsweise, in ihrer heutigen Form, existieren erst seit rund 45 Millionen Jahren, das Abtauchen der Nazca-Platte unter Südamerika dauert schon seit dem Paläozoikum an, also Hunderte von Millionen Jahren länger/“, sagt Onno Oncken. Ebenso ist das Wechselspiel zwischen den aufsteigenden heißen Gesteinsmassen und der Erdkruste viel komplexer, als ursprünglich angenommen. Steigt eine heiße Gesteinsblase auf, so wirkt die schlecht wärmeleitende Lithosphäre als Grenzschicht zur Oberfläche wie eine Wärmedecke, wodurch wiederum die Temperatur unterhalb weiter ansteigt.

Dieser Hitzestau kann schließlich wie ein Schweißbrenner ganze Kontinente bis zur Auflösung durchweichen, etwa vor 140 bis 130 Millionen Jahren, als Gondwana zuerst im Osten, dann im Westen auseinanderbrach.

Damals trennte sich auch Südamerika von Afrika, es waren aber genau die Konturen dieser beiden Kontinente, die Wegener auf seine Idee brachten.

Professor Oncken: „/Wegeners Ansatz war der Startpunkt, die Plattentektonik des vorigen Jahrhunderts die Revolution in den geowissenschaftlichen Auffassungen. Heute sehen wir eine ebenso gründliche, leise Revolution in der Theorie der Plattentektonik, weil wir unseren Planeten zunehmend als ein Gesamtsystem verstehen/.“**

**

*Abb. in druckfähiger Auflösung finden sich hier:*

http://www.gfz-potsdam.de/portal/cms/Schule/Unterrichtsergaenzende
+Materialien/Alle+Bilder+zu+allen+Themen/Geodynamik
Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Head, Public Relations -
Telegrafenberg
14473 Potsdam / Germany
e-mail:ossing@gfz-potsdam.de
Tel. ++49 (0)331-288 1040
Fax ++49 (0)331-288 1044
http://www.gfz-potsdam.de/

Franz Ossing | Helmholz Centre
Weitere Informationen:
http://www.gfz-potsdam.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics