Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Initialzündung für Tiefengeothermie-Forschung

07.05.2013
Die ETH Zürich erhält von der Werner Siemens-Stiftung zehn Millionen Schweizer Franken für den Aufbau einer Professur für Tiefengeothermie. Damit kann die ETH ihre Initiative für diese vielversprechende Energietechnologie wunschgemäss rasch starten.

Die Tiefengeothermie gilt als aussichtsreiche Technologie, mit deren Hilfe die bisher ungenutzte Wärmeenergie aus dem Erdreich erschlossen werden könnte. Mit dem Entscheid, zwei Professuren in Tiefengeothermie zu schaffen, hat die ETH Zürich schon früher ihren Willen bekräftigt, die Energiezukunft der Schweiz aktiv mitzugestalten. Die Donation der Werner Siemens-Stiftung von zehn Millionen Schweizer Franken an die ETH Zürich Foundation ermöglicht es nun der ETH Zürich, die Geothermie-Strategie konkret voranzutreiben und eine erste Professur einzurichten.

«Die sehr grosszügige Donation der Werner Siemens-Stiftung stärkt die ETH Zürich im Bereich der Tiefengeothermie zur richtigen Zeit. Wir müssen nun alles daran setzen, die Grundlagenforschung für diese Form der Erdwärme rasch anzugehen, wenn wir in zehn bis 20 Jahren konkreten Nutzen daraus ziehen wollen», sagt ETH-Präsident Ralph Eichler. Das Berufungsverfahren für die neue Professur für Geoenergie ist mit der Ausschreibung bereits angelaufen. Die Professur wird im Departement Erdwissenschaften angesiedelt sein.

Wichtiges Signal
In der Energiestrategie des Bundes haben die Erforschung und die Entwicklung der Geothermie einen festen Platz, damit Strom und Wärme in Zukunft vermehrt aus erneuerbaren Energieträgern stammen. Auch Kantone und die Industrie haben ein vitales Interesse an dieser Form der Energiegewinnung. «Wir geben die Initialzündung für zukünftige technologische Durchbrüche in einem Gebiet, das von zentraler Bedeutung für die Schweizer Volkswirtschaft werden könnte», fasst Ludwig Scheidegger, Obmann des Kuratoriums, die Motivation der Werner Siemens-Stiftung zusammen, genau diese Professur zu fördern.

Noch bezieht kein Schweizer Haushalt Strom aus einem Tiefengeothermie-Kraftwerk. Die Energieform gilt als beinahe unerschöpflich und hat ein riesiges Potenzial. Dieses für die Stromproduktion und die Fernwärmenutzung zu er-schliessen, ist aber nach wie vor eine grosse Herausforderung. Forschungsbedarf besteht unter anderem bei der Geologie des Grundgesteins, aus welcher die Wärme gewonnen werden soll. Aber auch technische Probleme wie die Entwicklung entsprechender Bohrtechniken und das künstliche Aufbrechen des Grundgesteins, um Klüfte zu erzeugen, müssen gelöst werden.

Chancen und Risiken ausloten
Vorderhand braucht es vor allem Forschung und Demonstrationsanlagen, um das Potenzial der Tiefengeothermie konkret zu lokalisieren und zuverlässig vor-herzusagen. Um den in der Erde schlummernden Energie-Schatz zu heben, sei eine gemeinsame Anstrengung der beteiligten Bundesstellen, der Forschung und der Wirtschaft nötig, findet Ralph Eichler. Die ETH Zürich werde dazu ihren Beitrag leisten, als Lieferantin von Grundlagenwissen, neuer Verfahren und Fachkräften, die es für den Bau und Betrieb solcher Anlagen brauchen wird.

Der Delegierte der ETH für Tiefengeothermie, Domenico Giardini, Professor für Seismologie und Geodynamik, ist ebenfalls erfreut über die Stärkung dieses aufstrebenden Forschungsgebietes. Er betont die Notwendigkeit, neuartige Ex-plorationstechniken, Überwachungsinstrumente sowie mögliche Risiken der Tiefengeothermie und weiterer Geo-Energien genau zu erforschen, um das Ver-trauen der Bevölkerung in diese Technologie zu stärken. Diese Ziele können nur mit einer neuen Professur erreicht werden.

Tiefengeothermie
Bei der Tiefengeothermie werden die hohen Temperaturen ausgenutzt, die in vier bis sechs Kilometern Tiefe im kristallinen Grundgebirge herrschen. Mit einem künstlich geschaffenen Wasserkreislauf wird die Wärme an die Erdoberfläche zur Strom- und Wärmeproduktion gebracht. Dabei wird bis in diese Gesteinsschicht gebohrt und mit hohem Druck eine Klüftung erzeugt, sodass das hinabgeführte Wasser durch das Gestein fliessen kann und sich dabei auf 200 Grad erwärmt. Genutzt werden kann auch Wasser, das bereits im Gestein enthalten ist. Über eine zweite Bohrung wird das erhitzte Wasser zurück an die Erdoberfläche geleitet und zur kontinuierlichen Strom- und Wärmeproduktion eingesetzt. Noch steckt diese Technologie in der Schweiz und international in den Kinderschuhen. Eine geothermische Tiefenbohrung in der Stadt Basel musste wegen Erdbeben gestoppt werden. Zurzeit ist ein Versuch bei St. Gallen und in Lavey-les-Bains am Laufen. Das Potenzial für die Erdwärme ist sehr hoch. Ein Vorteil dieser Energieform ist, dass sie regelmässig anfällt und auch regelbar ist. In der Schweiz wurden im Jahr 2011 über 2500 Gigawattstunden (GWh) geothermische Energie gewonnen. Mehr als drei Viertel davon stammen aus Erdwärmesonden-Anlagen. Aufgrund des hohen Potenzials rechnen Experten damit, dass bis 2030 rund ein Dutzend Tiefengeothermie-Kraftwerke ans Netz gehen und 800 GWh Strom produzieren.

Franziska Schmid | ETH Zürich
Weitere Informationen:
http://www.ethz.ch/media/detail?pr_id=1154
http://www.ethlife.ethz.ch/archive_articles/130507_interview_tiefengeothermie_per/index

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Staubablagerungen geben Neues zur Entstehungsgeschichte der Sahara preis
19.07.2017 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie